Trig Midterm Review 2013-14

Name \qquad
\qquad 1. Simplify $(x+1)\left(x^{2}+2 x+3\right)$
A. $x^{3}+x^{2}+2 x+3$
B. $x^{3}+3 x^{2}+5 x+3$
C. $x^{3}+x^{2}+5 x+3$
D. $x^{3}+3 x^{2}+2 x+3$
2. Simplify $2(2 n+4)-(6 n-2)$
A. $-2 n+10$
B. $-2 \mathrm{n}-10$
C. $2 \mathrm{n}-10$
D. $2 \mathrm{n}+10$
3. Simplify $(n-5)^{2}$
A. $\mathrm{n}^{2}+25$
B. $\mathrm{n}^{2}-25$
C. $n^{2}+10 n+25$
D. $n^{2}-10 n+25$
4. Simplify $\left(2 n^{3}+5 n\right)\left(4 n^{3}+2 n\right)$
A. $8 n^{6}+24 n^{4}+10 n^{2}$
B. $8 n^{9}+24 n^{4}+10 n^{2}$
C. $8 n^{6}+20 n^{3}+10 n$
D. $8 n^{9}+24 n^{3}+10 n^{2}$
5. Simplify $\quad\left(n^{3}\right)^{3}$
A. n^{6}
B. n^{9}
C. $2 \mathrm{n}^{3}$
D. $2 n^{9}$
6. Simplify $(x+2)(x+2)(x+2)$
A. $x^{3}+8$
B. $x^{3}+6 x^{2}+4 x+12$
C. $x^{3}+6 x^{2}+12 x+8$
D. $x^{3}+8 x^{2}+12 x+8$
7. Simplify $\sqrt{-40}$
A. $2 \sqrt{10}$
B. $2 i \sqrt{10}$
C. $4 i \sqrt{10}$
D. $10 i \sqrt{2}$
8. Simplify $\sqrt{20 a^{5} y^{10}}$
A. $2 a^{2} y^{5} \sqrt{5 a}$
B. $5 a y^{5} \sqrt{2 a}$
C. $2 a y^{5} \sqrt{5 a}$
D. $5 a y^{5} \sqrt{2 a y}$
\qquad 9. Simplify $\sqrt[4]{x^{4} y^{10}}$
A. $x y \sqrt[4]{x y}$
B. $x y \sqrt[4]{x y^{2}}$
C. $x y^{3} \sqrt[4]{y}$
D. $x y^{2} \sqrt[4]{y^{2}}$
\qquad 10 Solve by factoring: $\quad x^{2}-x-20=0$
A. $x=-5$ or $x=4$
B. $x=5$ or $x=-4$
C. $x=5$ or $x=4$
D. $x=-5$ or $x=-4$
\qquad 11. Simplify $\left(a^{4} n^{3} x^{6}\right)\left(a^{2} n^{3} x^{6}\right)$
A. $a^{8} n^{6} x^{12}$
B. $a^{6} n^{9} x^{12}$
C. $a^{6} n^{6} x^{36}$
D. $a^{6} n^{6} x^{12}$
12. Simplify $\sqrt{-80 a^{2}}$
A. $4 a \sqrt{5}$
B. $2 a i \sqrt{10}$
C. $4 a i \sqrt{5}$
D. None of the above
13. Solve by factoring: $\quad 2 x^{2}+19 x+9=0$
A. $x=9$ or $x=1 / 2$
B. $\mathrm{x}=9$ or $\mathrm{x}=-1 / 2$
C. $x=-9$ or $x=1 / 2$
D. $x=-9$ or $x=-1 / 2$
14. Simplify $\sqrt{120}$
A. 60
B. $2 \sqrt{30}$
C. $2 \sqrt{40}$
D. $4 \sqrt{10}$
15. Factor $\mathrm{x}^{2}+\mathrm{x}-30$
A. $(x+6)(x-5)$
B. $(x-6)(x+5)$
C. $(x-10)(x+3)$
D. None of the above
_16. Simplify $\frac{4 \pm \sqrt{-40}}{2}$
A. $2 \pm i \sqrt{10}$
B. $2 \pm 2 i \sqrt{10}$
C. $2 \pm i \sqrt{20}$
D. $2 \pm 2 i$
17. Solve for $n: 4(2 n-3)+2(2 n-1)=10$
A. $n=-4$
B. $\mathrm{n}=\frac{1}{2}$
C. $n=-2$
D. $\mathrm{n}=2$
18. Simplify $\frac{9 \pm \sqrt{18}}{3}$
A. $3 \pm i \sqrt{3}$
B. $3 \pm i \sqrt{2}$
C. $3 \pm \sqrt{3}$
D. $3 \pm \sqrt{2}$
\qquad 19. Solve for $n: \quad 4(2 n+5)+2(3 n+5)=10 n+22$
A. $n=-4$
B. $\mathrm{n}=\frac{1}{2}$
C. $\mathrm{n}=-2$
D. $\mathrm{n}=2$
20. Simplify $(x+1)(x-1)(x+3)(x-3)$
A. $x^{4}-10 x^{2}+9$
B. $x^{4}-3 x^{2}+9$
C. $x^{4}-6 x^{2}+9$
D. $x^{4}-6 x^{2}+6$
21. Simplify $\quad\left(2 n^{3} y^{4}\right)^{2}+n\left(n^{5}\right) y^{8}$
A. $5 \mathrm{n}^{6} \mathrm{y}^{8}$
B. $3 n^{6} y^{8}$
C. $5 n^{3} y^{4}$
D. $8 n^{12} y^{16}$
22. Simplify $\quad\left(3 n^{2} y^{4}\right)^{2}+n\left(n^{4}\right) y^{3} y^{5}$
A. $10 n^{4} y^{8}$
B. $10 n^{5} y^{8}$
C. $7 n^{5} y^{8}$
D. None of the above
23. Simplify $\frac{4 a^{2} c^{4}}{6 a c^{5}}$
A. $-\frac{2 a}{3 c}$
B. $\frac{4 a}{6 c}$
C. $\frac{2 a}{3 c}$
D. None of the above
_24. Simplify $\frac{a^{4} b^{10} c^{5}}{a b^{8} c^{7}}$
A. $\frac{a^{3} b^{2}}{c}$
B. $\frac{a b^{2}}{c^{2}}$
C. $\frac{a^{3}}{b^{2} c^{2}}$
D. None of the above
_25. Simplify $\frac{n^{2}+4 n+3}{n^{2}+7 n+12}$
A. $\frac{n+3}{n+4}$
B. $\frac{1}{n+4}$
C. $\frac{1}{3 n+4}$
D. $\frac{n+1}{n+4}$
_26. Simplify $\frac{n^{2}-16}{n^{2}+n-20}$
A. $\frac{n-4}{n-5}$
B. $\frac{n+4}{n-5}$
C. $\frac{n+4}{n+5}$
D. Doesn't simplify
_27. Simplify $\frac{n^{2}+9 n-10}{n^{2}-3 n-4}$
A. $\frac{n+10}{n+4}$
B. $\frac{n+10}{n-4}$
C. $\frac{n+6 n-6}{1}$
D. Doesn't simplify
28. Perform the following division $n + 4 \longdiv { n ^ { 2 } + 5 n - 2 }$
A. $n+9+\frac{-34}{n+4}$
B. $n+1+\frac{-2}{n+4}$
C. $n+1+\frac{-6}{n+4}$
D. $n+9+\frac{38}{n+4}$
_29. Perform the following division $n - 2 \longdiv { n ^ { 2 } + 3 n + 1 }$
A. $n+5+\frac{11}{n-2}$
B. $n+5+\frac{9}{n-2}$
C. $n+1+\frac{1}{n-2}$
D. $n+1+\frac{-3}{n-2}$
_30. $\left(\frac{2}{3}\right)^{-3}$ NO CALCULATOR ALLOWED!
A. $\frac{6}{27}$
B. $\frac{8}{27}$
C. $\frac{27}{8}$
D. $-\frac{8}{27}$
_31. Simplify $\left(\frac{n^{2} y^{-2}}{a^{-4}}\right)^{2}$
A. $\frac{n^{4} y^{4}}{a^{16}}$
B. $\frac{n^{4} y^{4}}{a^{8}}$
C. $\frac{n^{4} a^{16}}{y^{4}}$
D. $\frac{n^{4} a^{8}}{y^{4}}$
_32. Simplify $\left(-2 a^{-3}\right)^{-2}$
A. $\frac{4}{a^{6}}$
B. $4 a^{6}$
C. $\frac{a^{6}}{4}$
D. $\frac{a^{5}}{4}$
_33. Simplify $\left(\frac{2 a^{3}}{5 b^{2}}\right)^{-2}$
A. $\frac{25 b^{4}}{4 a^{6}}$
B. $\frac{4 b^{4}}{25 a^{6}}$
C. $\frac{25 a^{6}}{4 b^{4}}$
D. $\frac{25 a^{6} b^{4}}{4}$
_34. Simplify $\left(a^{-3} b^{-2}\right)^{2}$
A. $\frac{-1}{a^{6} b^{4}}$
B. $\frac{a^{6}}{b^{4}}$
C. $\frac{1}{a^{6} b^{4}}$
D. $a^{6} b^{4}$
35. Factor $\quad 16 a^{4} b^{2}+20 a b^{5}$
A. $a b^{2}\left(16 a^{3}+20 b^{3}\right)$
B. $a b\left(16 a^{3} b+20 b^{4}\right)$
C. $4 a b^{2}\left(4 a^{3}+5 b^{3}\right)$
D. None of the above
\qquad 36. Factor $8 n^{3}+27 y^{3}$
A. $(2 n+3 y)\left(4 n^{2}+6 n y+9 y^{2}\right)$
B. $(2 n+3 y)\left(4 n^{2}-6 n y+9 y^{2}\right)$
C. $(2 n-3 y)\left(4 n^{2}+6 n y+9 y^{2}\right)$
D. $(2 n+3 y)\left(4 n^{2}-6 n y-9 y^{2}\right)$
\qquad 37. Factor $n^{3}+8$
A. $(n+2)\left(n^{2}+2 n+4\right)$
B. $(\mathrm{n}+2)\left(\mathrm{n}^{2}-2 \mathrm{n}+4\right)$
C. $(n-4)\left(n^{2}+4 n+2\right)$
D. $(n+4)\left(n^{2}-4 n+2\right)$
38. Factor $\quad 3 n^{3}+12 n^{2}+2 n+8$
A. $(n+2)\left(3 n^{2}+4\right)$
B. $(3 n+4)\left(n^{2}+2\right)$
C. $(3 n+2)\left(n^{2}+4\right)$
D. $(n+4)\left(3 n^{2}+2\right)$
\qquad 39. Factor $y^{5}+3 y^{3}+4 y^{2}+12$
A. $\left(y^{2}+4\right)\left(y^{3}+3\right)$
B. $\left(y^{2}+3\right)\left(y^{3}+4\right)$
C. $\left(y^{4}+3\right)(y+4)$
D. $(y+3)\left(y^{5}+4\right)$
40. Factor $n^{3}+2 n-n^{2}-2$
A. $\left(n^{2}-1\right)(n+2)$
B. $\left(n^{2}+2\right)(n-1)$
C. $\left(n^{2}+1\right)(n-2)$
D. $\left(n^{2}-2\right)(n+1)$
41. Factor $8 n^{3}+125$
A. $(2 n+5)\left(4 n^{2}+10 n+25\right)$
B. $(2 n-5)\left(4 n^{2}+10 n+25\right)$
C. $(2 n+5)\left(4 n^{2}-10 n+25\right)$
D. $(2 n-5)\left(8 n^{2}+10 n+25\right)$
\qquad 42. Which set of points would be a function?
A. $(2,6),(3,4),(2,10)$
B. $(1,1),(2,2)(1,3)$
C. $(1,9),(2,9),(5,9)$
D. None are functions
43. Which graph below is not a function?

A.
B.
C.
44. If $f(x)=2 x^{2}-4$, what is $f(2)$?
A. 2
B. 4
C. 8
D. 12
45. If $f(x)=-2 x-5$, what is $f(-3)$?
A. 1
B. 2
C. 4
D. -11
46. If $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-1$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$, what is $\mathrm{f}(\mathrm{g}(2))$?
A. 8
B. 9
C. 14
D. 13
47. If $f(x)=3 x-10$ and $g(x)=2 x+1$, what is $f(g(x))$?
A. $6 x-19$
B. $6 x-13$
C. $6 x+13$
D. $6 x-7$
48. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{x-3}$?
A. $x \neq 3$
B. $x>3$
C. $x \geq 3$
D. None of the above
49. What is the domain of $\mathrm{f}(\mathrm{x})=\frac{x^{3}}{x-3}$?
A. $x \neq 3$
B. $x>3$
C. $x \geq 3$
D. None of the above
50. What is the domain of $\mathrm{f}(\mathrm{x})=\frac{x^{3}+4 x-1}{\sqrt{x}}$?
A. $x \leq 0$
B. $x \neq 0$
C. $x>0$
D. $x \geq 0$
51. What is the domain of $f(x)=x^{2}-9$?
A. $x \neq 3$
B. \mathbb{R}
C. $x \geq 3$
D. $x>3$
52. $\sum_{n=-2}^{1} 2 n-1$?
A. -10
B. -9
C. -8
D. -6
53. What is the slope from $(1,4)$ to $(3,10)$?
A. 6
B. 2
C. 3
D. -2
54. What is the slope from $(\mathrm{n}, 6)$ to $(\mathrm{n}+2,7)$?
A. 1
B. $\frac{1}{2}$
C. 0
D. 2
55. What is the distance from $(-3,-2)$ to $(1,-6)$?
A. $4 \sqrt{2}$
B. $3 \sqrt{2}$
C. $2 \sqrt{3}$
D. $2 \sqrt{2}$
56. What is the distance from $(\mathrm{n}, 3)$ to $(\mathrm{n}+2,7)$?
A. $2 \sqrt{5}$
B. $5 \sqrt{2}$
C. $5 \sqrt{3}$
D. $3 \sqrt{2}$
57. Which equation below is not in standard form?
A. $3 x-y=5$
B. $4 x+y=-3$
C. $-2 x+y=9$
D. $x-y=-1$
58. What is the inverse of $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-5$?
A. $y=\frac{x+5}{3}$
B. $y=\frac{x+3}{5}$
C. $y=\frac{x}{3}+5$
D. $y=\frac{x-3}{5}$
59. Which is the equation of the line with a slope of 4 and that goes through $(2,5)$?
A. $y=-4 x-3$
B. $y=4 x-3$
C. $y=4 x+3$
D. $y=-4 x+3$
\qquad 60. Which is the equation of the line that goes through $(1,4)$ and $(3,10)$?
A. $y=3 x-2$
B. $y=3 x+2$
C. $y=3 x+10$
D. $y=3 x+1$
\qquad 61. Which is the equation that is parallel to $y=3 x-5$ and goes through $(3,4)$?
A. $y=3 x-1$
B. $y=3 x-2$
C. $y=3 x+1$
D. $y=3 x-5$
62. Which is the equation that is perpendicular to $\mathrm{y}=-2 \mathrm{x}+4$ and goes through $(4,1)$?
A. $y=\frac{1}{2} x+1$
B. $y=2 x-7$
C. $y=-\frac{1}{2} x+1$
D. $y=\frac{1}{2} x-1$
63. Which is the equation that is parallel to $\mathrm{y}=5 \mathrm{x}-2$ and goes through $(1,1)$?
A. $5 x-y=4$
B. $5 x-2 y=3$
C. $5 x+y=6$
D. $-5 x-y=-6$
\qquad 64. What inequality is graphed below?

A. $y=\frac{1}{2} x+1$
B. $y \geq \frac{1}{2} x+1$
C. $y<\frac{1}{2} x+1$
D. $y>\frac{1}{2} x+1$

I

II
65. What is the domain of the graph I above?
A. $\mathbb{R}:-1<x \leq 4$
B. $\mathbb{R}:-1 \leq x<4$
C. $\mathbb{R}:-4<x \leq 1$
D. $\mathbb{R}:-4 \leq x<1$
66. What is the range of the graph I above?
A. $\mathbb{R}:-1<y \leq 4$
B. $\mathbb{R}:-1 \leq y<4$
C. $\mathbb{R}:-4<y \leq 1$
D. $\mathbb{R}:-4 \leq y<1$
\qquad 67. What is the domain of the graph II above?
A. $\mathbb{R}:-1<x \leq 3$
B. $\mathbb{R}:-1 \leq x<3$
C. $\mathbb{R}:-4<x \leq 4$
D. $\mathbb{R}:-4 \leq x<4$
68. What is the range of the graph II above?
A. $\mathbb{R}:-1<y \leq 3$
B. $\mathbb{R}:-1 \leq y<3$
C. $\mathbb{R}:-4<y \leq 4$
D. $\mathbb{R}:-4 \leq y<4$
\qquad 69. What is the equation of the line in standard form that is parallel to $y=8 x-5$ and passes through the point $(1,20)$.
A. $8 x+y=12$
B. $8 x-y=-12$
C. $12 \mathrm{x}-\mathrm{y}=-8$
D. $8 x-12=y$
\qquad 70. Give the equation of the line in standard form that is perpendicular to $5 x-4 y=2$ and passes through the point $(6,7)$.
A. $4 x-5 y=-11$
B. $5 x+4 y=58$
C. $4 x+5 y=59$
D. $7 x+2 y=53$
A. $\left\{\begin{array}{l}y=3 x-5 \\ y=2 x-1\end{array}\right.$
B. $\left\{\begin{array}{l}y=3 x-1 \\ y+x=15\end{array}\right.$
C. $\left\{\begin{array}{l}2 x+3 y=8 \\ 4 x+2 y=12\end{array}\right.$
D. $\left\{\begin{array}{l}2 x-y=8 \\ 3 x+y=12\end{array}\right.$
E. $\left\{\begin{array}{l}5 x-2 y=2 \\ 3 x-3 y=-15\end{array}\right.$
\qquad 71. What is the value of y in System A above.
A. $y=11$
B. $y=7$
C. $y=6$
D. None of the above
\qquad 72. What is the value of y in System B above.
A. $y=10$
B. $y=4$
C. $y=6$
D. None of the above
\qquad 73. What is the value of y in System C above.
A. $y=1$
B. $y=2$
C. $y=7$
D. None of the above
\qquad 74. What is the value of y in System D above.
A. $y=1$
B. $y=4$
C. $y=2$
D. None of the above
\qquad 75. What is the value of y in System E above.
A. $y=-9$
B. $\mathrm{y}=0$
C. $y=-8$
D. None of the above
$\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 2 & 4\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}3 & -2 \\ -1 & -4\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ll}2 & 3 \\ 5 & 9\end{array}\right] \quad \mathrm{D}=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right] \mathrm{E}=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$
\qquad 76. What is the A + B? NO CALCULATOR ALLOWED!
A. -2
B. 4
C. 2
D. None of the above
\qquad 77. What is 3A? NO CALCULATOR ALLOWED!
A. $\left[\begin{array}{cc}6 & 9 \\ 6 & 12\end{array}\right]$
B. $\left[\begin{array}{cc}6 & 9 \\ 6 & 15\end{array}\right]$
C. $\left[\begin{array}{cc}6 & 9 \\ 8 & 12\end{array}\right]$
D. None of the above
78. What is AB? NO CALCULATOR ALLOWED!
A. $\left[\begin{array}{cc}3 & -8 \\ 2 & -20\end{array}\right]$
B. $\left[\begin{array}{ll}3 & -16 \\ 2 & -12\end{array}\right]$
C. $\left[\begin{array}{cc}6 & -6 \\ -2 & -16\end{array}\right]$
D. None of the above
\qquad 79. What is BC? NO CALCULATOR ALLOWED!
A. $\left[\begin{array}{cc}2 & 1.5 \\ -1 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}2 & .5 \\ 1 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}2 & 1.5 \\ -1.5 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}2 & -1.5 \\ -1 & 1\end{array}\right]$
\qquad 80. What is DE? NO CALCULATOR ALLOWED!
A. [8]
B. $[18]$
C. [20]
D. None of the above
\qquad 81. In regard to the matrices above, does $\mathrm{DE}=\mathrm{ED}$?

NO CALCULATOR ALLOWED!
A. Yes
B. No
C. Not possible to determine
82. What is the perpendicular slope to the line $y=-2 x+4$?
A. $-1 / 2$
B. 2
C. $1 / 2$
D. -2
83. Consider the line $4 x+2 y=9$. What is the slope of the line parallel to this line?
A. $-1 / 2$
B. 2
C. $1 / 2$
D. -2
\qquad 84. In interval notation, what is $x>3$?
A. $(3, \infty)$
B. $[3, \infty)$
C. $(-\infty, 3)$
D. $(-\infty, 3]$
85. In interval notation, what is $\mathrm{x}<3$?
A. $(3, \infty)$
B. $[3, \infty)$
C. $(-\infty, 3)$
D. $(-\infty, 3]$
86. In interval notation, what is $x \leq 3$?
A. $(3, \infty)$
B. $[3, \infty)$
C. $(-\infty, 3)$
D. $(-\infty, 3]$
87. In interval notation, what is $2<x \leq 5$?
A. $(2,5)$
B. $[2,5)$
C. $[2,5]$
D. $(2,5]$
88. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{x+6}$?
A. $x \neq-6$
B. $x>-6$
C. $x \geq-6$
D. \mathbb{R}
89. What is the domain of $\mathrm{f}(\mathrm{x})=\frac{2 x}{2 x-6}$?
A. $x \neq 3$
B. $x>3$
C. $x \geq 3$
D. \mathbb{R}
90. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{10-x}$?
A. $x \neq 10$
B. $x \leq 10$
C. $x \geq 10$
D. \mathbb{R}
91. What is the domain of $\mathrm{f}(\mathrm{x})=\sqrt{-2 x+4}$?
A. $x \neq 2$
B. $x \leq 2$
C. $x \geq 2$
D. \mathbb{R}
92. Simplify $5 n-(2 n-4)-(n+1)$
A. $2 n+3$
B. $2 \mathrm{n}+5$
C. $2 \mathrm{n}-3$
D. $2 n-5$
93. If A is a 4×5 matrix, B a 3×3 matrix, and C a 3×5 matrix, what type of matrix would $\mathrm{A}+\mathrm{C}$ be?
A. 4×5
B. 4×3
C. 5×5
D. They can't be added
94. If A is a 4×5 matrix, B a 3×3 matrix, and C a 4×5 matrix, what type of matrix would $\mathrm{A}+\mathrm{C}$ be?
A. 4×5
B. 4×3
C. 5×5
D. They can't be added
95. If A is a 4×5 matrix, B a 4×3 matrix, and C a 3×5 matrix, what matrices could be multiplied?
A. A and B
B. A and C
C. B and C
D. All of them could be

96. What is the domain of graph 1 above?
A. $\mathrm{x}>-3$
B. $x<-3$
C. $x \geq-3$
D. \mathbb{R}
\qquad 97. What is the range of graph 1 above?
A. $y>-3$
B. $y<-3$
C. $\mathrm{y} \geq-3$
D. \mathbb{R}
98. What is the domain of graph 2 above?
A. $x>2$
B. $x=2$
C. $x \geq 2$
D. \mathbb{R}
99. What is the domain of graph 3 above?
A. $x \geq-1$
B. $x<-1$
C. $x \geq 1$
D. \mathbb{R}
\qquad 100. What is the range of graph 3 above?
A. $y \geq-1$
B. $\mathrm{y}<-1$
C. $y \geq 1$
D. \mathbb{R}
101. $\sum_{n=-2}^{0} n^{2}$?
A. -1
B. 5
C. 8
D. 0
102. $\sum{n=-2}^{3} 2-n$?
A. 9
B. 11
C. 12
D. 13
\qquad 103. From the 40 shirts I have, I must pick 5 to plan out my week of teaching.

How many different looks would I have next week?
A. 65,800
B. 658,008
C. $78,960,960$
D. $789,609,600$
\qquad 104. From the 20 kids in the class, I must pick 2 to represent my homeroom as Class Officers. How many possibilities exist?
A. 80
B. 190
C. 380
D. 720
\qquad 105. If a student body has 82 students, in how many different ways could the class elect a President, Vice President, and Secretary?
A. 72,000
B. 88,560
C. 322,240
D. 531,360
\qquad 106. I have a safe in my house that has a key pad on it with the digits $0-9$ on it. If my combination is a 5 digit code, how many possible combinations exist?
A. 252
B. 67,000
C. 100,000
D. 212,540
\qquad 107. Old VA license plates used to be 3 letters followed by 3 numbers.

How many license plates could the state make in this manner?
A. Between $1-100,000$
B. Between 100,001 $-1,000,000$
C. Between $1,000,001-20,000,000$
D. Over 20,000,000
\qquad 108. How many 5 card hands can be dealt from a deck of cards?
(For you non-card people, there are 52 cards in a deck.)
A. Between $1-1,000,000$
B. Between $1,000,001-5,000,000$
C. Between $5,000,001-10,000,000$
D. Over $10,000,000$
\qquad 109. There are 10 girls and 8 boys up for the "Hickam Award." In how many ways can 2 girls and 3 boys be selected to receive this prestigious award?
A. 101
B. 212
C. 2520
D. 3620
110. Simplify $\sqrt[4]{a^{8} b^{2} c^{13}}$
A. $a c^{3} \sqrt[4]{b^{2} c}$
B. $a^{2} c^{34} \sqrt{b^{2} c}$
C. $a^{2} b c^{3} \sqrt[4]{c}$
D. $a^{2} c^{2} \sqrt[4]{b^{2} c^{2}}$
111. Solve $x^{3}+6 x^{2}+5 x=0$
A. $x=0$ or $x=-3$ or $x=-2$
B. $x=0$ or $x=5$ or $x=1$
C. $x=0$ or $x=-5$ or $x=-1$
D. $x=0$ or $x=3$ or $x=2$
112. What is the domain of $\mathrm{y}=\mathrm{x}-4$?
A. $x>4$
B. $x \neq 4$
C. $x<4$
D. \mathbb{R}
113. If $f(x)=2 x$ and $g(x)=5 x+10$, what is $f(g(x))$?
A. $10 x+10$
B. $10 \mathrm{x}+20$
C. $20 \mathrm{x}+10$
D. $10 \mathrm{x}-10$
114. What is the inverse of $f(x)=x^{2}-5$?
A. $y= \pm \sqrt{x+5}$
B. $y= \pm \sqrt{x-5}$
C. $y= \pm \sqrt{5 x}$
D. $y=5 x-5$
\qquad 115. What is the distance from $(2, n)$ to $(4, n+2)$?
A. $\sqrt{18}$
B. $2 n$
C. $\sqrt{8}$
D. $n \sqrt{8}$
116. What would the slope of the line that is perpendicular to $2 x-4 y=10$ be?
A. 2
B. -2
C. $1 / 2$
D. $-1 / 2$
117. Which equation below is the quadratic equation?
A. $x=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$
B. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 c}$
C. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
118. Factor $a^{3}+4 a+5 a^{2}+20$
A. $\left(a^{2}+4\right)(a+5)$
B. $\left(a^{2}+5\right)(a+4)$
C. $\left(2 \mathrm{a}^{2}+5\right)(\mathrm{a}+4)$
D. None of the above
119. Factor $5 \mathrm{a}^{2}+10 \mathrm{a}^{3}$
A. $5\left(\mathrm{a}^{2}+2 \mathrm{a}\right)$
B. $5 a\left(a+2 a^{2}\right)$
C. $5 \mathrm{a}^{2}(2 \mathrm{a})$
D. $5 \mathrm{a}^{2}(1+2 \mathrm{a})$
120. What is the approximate distance from $(1,4)$ and $(3,10)$?
A. 6.3
B. 7.8
C. 11.2
D. None of the above
121. What is the approximate distance from $(1,5)$ and $(-4,-5)$?
A. 6.3
B. 11.2
C. 13.1
D. None of the above
122. What is the midpoint between $(1,4)$ and $(3,10)$?
A. $(2,7)$
B. $(4,14)$
C. $(1,3)$
D. None of the above
123. What is the midpoint between $(1,5)$ and $(-4,-5)$
A. $(-1.5,5)$
B. $(0,5)$
C. $(-3,0)$
D. None of the above
124. What is the slope from $(2, n)$ and $(4, n+6)$?
A. 2
B. 3
C. 4
D. None of the above
125. What is the midpoint between $(2, n)$ and $(4, n+4)$?
A. $(6, n+4)$
B. $(3, n+2)$
C. $(3, \mathrm{n}+4)$
D. None of the above
126. What is the approximate distance from $(2, \mathrm{n})$ and $(4, \mathrm{n}+8)$?
A. 7.2
B. 8.2
C. 9.2
D. None of the above
127. Which equation below is not in standard form?
A. $3 x-y=5$
B. $4 x+y=-3$
C. $-2 x+y=9$
D. $x-y=-1$
128. Find the equation of the line, in slope intercept form, that goes through the point $(2,-1)$ and $(3,-9)$
A. $y=-8 x-12$
B. $y=-10 x+12$
C. $y=-8 x+12$
D. None of the above
129. What is the equation of the line, in slope intercept form, that goes through the point $(8,4)$ and has a slope of -1 .
A. $y=-x-8$
B. $y=-x+4$
C. $y=-x+12$
D. None of the above
130. Give the equation of the line in standard form that is perpendicular
to $y=-4 x-5$ and passes through the point $(-8,2)$.
A. $x-4 y=-16$
B. $2 x+4 y=-8$
C. $x+8 y=8$
D. None of the above
131. Which equation below is not in slope intercept form?
A. $y=-2 x+6$
B. $y=1 / 2 x-5$
C. $-\mathrm{y}=2 \mathrm{x}+6$
D. $y=4 x$
132. Give the equation of the line in standard form that is parallel to $12 \mathrm{x}+2 \mathrm{y}=8$ and passes through the point $(-1,2)$.
A. $6 x-y=-8$
B. $6 x+y=-4$
C. $6 x-2 y=-10$
D. None of the above
133. $\sum_{n=3}^{5} n^{2}$
A. 30
B. 40
C. 45
D. None of the above
134. $\sum_{n=2}^{4}\left(2^{n}-10\right)^{n}$
A. 1232
B. 1324
C. 1346
D. None of the above
135. $\frac{96!}{94!4!}$
A. 96
B. 360
C. 480
D. None of the above
_136. $\frac{76!}{74!3!}$
A. 450
B. 950
C. 1050
D. None of the above
\qquad 137. $\frac{215!}{213!}$
A. 23,220
B. 46,010
C. 52,300
D. None of the above
138. My password to \log on to my computer can be any letter or digit. If I have a passcode that is 3 characters long, how many possibilities for a passcode are there?
A. 4,666
B. 7,140
C. 71,400
D. 46,656
139. A zip code is a 5 digit number that the post office uses to help deliver the mail. How many zip codes exist if the first and last digit cannot be a 0 ?
A. 252
B. 72,000
C. 81,000
D. 100,000
\qquad 140. From my 10 cousins, I need to pick two of them to help with decorating for my surprise $40^{\text {th }}$ Birthday party. How many different ways could I pick the two?
A. 45
B. 60
C. 90
D. None of the above
\qquad 141. From the 10 different color swatches that my wife picked for the new colors of what she wants, me to paint the bedroom, I must pick three. In how many different ways could I pick the three?
A. 120
B. 720
C. 7,600
D. 76,000
\qquad 142. How many different ways can one answer a 10 question multiple choice test that has options A, B, C, and D?
A. 210
B. 2520
C. 5040
D. None of the above
143. Pizza Boy offers a large 3 topping pizza for $\$ 13.99$ If they have 20 toppings from which you can choose, how many different possibilities can you make assuming you choose 3 different toppings?
A. 1140
B. 6840
C. 9240
D. None of the above
\qquad 144. Perform the following division $n + 2 \longdiv { n ^ { 2 } + 5 n + 2 }$
A. $n+3+\frac{8}{n+2}$
B. $n+3+\frac{-4}{n+2}$
C. $n+7+\frac{-12}{n+4}$
D. $n+7+\frac{16}{n+4}$
\qquad 145. Perform the following division $n - 5 \longdiv { n ^ { 2 } + n - 1 }$
A. $n+6+\frac{29}{n-5}$
B. $n+6+\frac{-31}{n-5}$
C. $n-4+\frac{-21}{n-5}$
D. $n-4+\frac{19}{n-5}$
\qquad 146. Simplify $(x-1)\left(x^{2}+2 x+3\right)$
A. $x^{3}+x^{2}+x-3$
B. $x^{3}+2 x^{2}+x-3$
C. $x^{3}+x^{2}-x-3$
D. $x^{3}+x^{2}+2 x-3$
A. $-2 n-10$
$2(2 n-4)-(6 n-2)$
B. $-2 n-6$
C. $2 \mathrm{n}-10$
D. None of the above
148. Simplify $(n+5)^{2}$
A. $\mathrm{n}^{2}+25$
B. $\mathrm{n}^{2}+10$
C. $n^{2}+10 n+25$
D. $n^{2}+10 n+10$
149. Simplify $\quad\left(2 n^{3}\right)^{3}$
A. $6 n^{6}$
B. $6 n^{9}$
C. $8 n^{6}$
D. $8 n^{9}$
150. Simplify $\sqrt{20 a^{3} y^{10}}$
A. $2 a y^{5} \sqrt{5 a y}$
B. $5 a y^{5} \sqrt{2 a}$
C. $2 a y^{5} \sqrt{5 a}$
D. $5 a y^{5} \sqrt{2 a y}$
151. Simplify $\sqrt[3]{x^{4} y^{10}}$
A. $x y^{4} \sqrt[3]{x y}$
B. $x y^{3} \sqrt[3]{x y^{2}}$
C. $x y^{3} \sqrt[3]{x y}$
D. $x y \sqrt[3]{y}$
\qquad 152. Perform the following division $n - 2 \longdiv { n ^ { 2 } + 3 n - 1 }$
A. $n+5+\frac{-11}{n-2}$
B. $n+5+\frac{9}{n-2}$
C. $n+1+\frac{1}{n-2}$
D. $n+1+\frac{-3}{n-2}$
153. Simplify $\left(2 a^{-3}\right)^{-2}$
A. $\frac{4}{a^{6}}$
B. $4 \mathrm{a}^{6}$
C. $\frac{a^{6}}{4}$
D. $\frac{a^{5}}{4}$
154. Simplify $\left(a^{-3} b^{-2}\right)^{-2}$
A. $\frac{-1}{a^{6} b^{4}}$
B. $\frac{a^{6}}{b^{4}}$
C. $\frac{1}{a^{6} b^{4}}$
D. $a^{6} b^{4}$
155. $\sum_{n=1}^{3}\left(2^{n}\right)^{n}$
A. 522
B. 528
C. 530
D. 542
156. $\frac{100!3!}{99!4!}$
A. 18
B. 24
C. 25
D. 36
157. On a quiz, there are 5 True/False questions and 5 multiple choice questions with options of A, B, or C . How many different ways can the quiz be answered?
A. 3,125
B. 7,776
C. 6,257,000
D. $9,765,625$

