Geometry Review Quiz 1-5 E

1.	What is the distance from $(1, 2)$ to $(-2, 6)$?			
	A. $\sqrt{17}$	B. $\sqrt{7}$	C. $\sqrt{24}$	D. None of the above
2.	A line segment has an endpoint at $(3, 2)$. If the midpoint of the line segment is $(6, 1)$,			
	what are the coordinate $A = (4.5, 1.5)$	ates of the point at the $(4.5, 2)$	other end of the line second $C_{1}(0,0)$	egment? $\mathbf{D} (0, 2)$
	A. (4.3, 1.3)	D. (4.3, 2)	C. (9,0)	D. (9, 5)
2	In $ACPP$, $CP = 11$, $PP = 9$ and $PC = 7$			
3.	Which statement is true about the angles in $\triangle GBR$?			
	A. $\angle R$ is the greates	it	C. $\angle G$ is the greate	st
	B. $\angle R$ is the least		D. $\angle G$ is the least	
4.	What equation would be perpendicular to $y = \frac{1}{2}x + 5$			
	A. $y = -2x + 5$	B. $y = 2x - 4$	C. $y = -\frac{1}{2}x - 5$	D. $y = -\frac{1}{2}x - 5$
5.	If the conditional statement "If you have a laptop, then you have a computer" is			
	represented by $p \rightarrow q$, what is the symbolic representation of "If you have a computer, then you do not have a lepton"?			
	A $a \rightarrow \sim n$	B $\sim a \rightarrow n$	$C n \rightarrow \sim a$	D $\sim a \rightarrow \sim n$
		\mathbf{D} , \mathbf{q} \mathbf{p}		p, q , p
6	6 If $AABC$ is an isosceles triangle with $AB = BC$ which statement must be true			
0.	A. $\angle C = \angle B$	B. $\angle A = \angle B$	C. $\angle A = \angle C$	D. $AC = BC$
7.	I have a total of 16 kids. If 11 of my kids play soccer and 9 play tennis.			
	how many play both	tennis and soccer?		,
	A. 2	B . 4	C. 8	D. 10
8.	Which of the followi	ng cannot be used to p	rove congruency?	5 6 4 6
	A. SSA	B. SSS	C. AAS	D. SAS
9.	If C is between X an $A \in \mathcal{F}$	d Y with $CX = 8n - 4$	and $CY = 2n + 10$, what $C = 10n + 6$	at is XY?
	A. $011 - 0$	D. $011 - 14$	C. $1011 + 0$	D. $1011 - 0$
10. If two oldes of a trice also are 6 are and 9 are substantiated whether the trace of a trice of				
10.	If two sides of a triar $\Delta = 2 < m < 1/4$	igle are 6 cm and 8 cm B $2 < m < 1/4$, what must be true about $C = 2 > m > 1/2$	but the third side? $D 2 \le m \le 14$
	11. 22/11/14	D . $2 < 111 < 14$	C. 2 > m > 14	\mathbf{D} , $2 \ge m \ge 14$