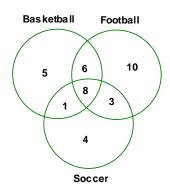
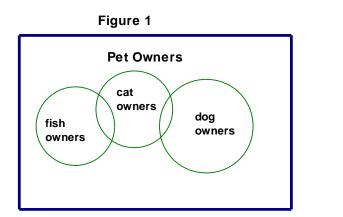
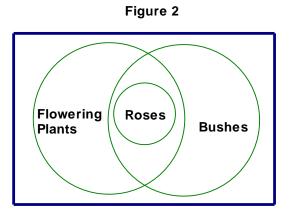
2013-14 Geometry Midterm Questions

Name		_		
1.	What is the midpoint of A. (12, 2)	of a line that has endp B. (3, 1)	oints at (0, 3) and (6, - C. (12, -5)	1)? D. (3, 2)
2.	If X is the midpoint of A. $n-5$	\overrightarrow{CN} and $CX = 2n - B$. $4n - 20$	10, what is CN? C. 4n	D. 40
3.	If C is between X and \therefore A. $6n - 6$	Y with $CX = 8n - 4a$ B. $6n - 14$	and $CY = 2n + 10$, what C. $10n + 6$	tt is XY? D. 10n − 6
4.	What is the midpoint of A. (6, -4)	of a line that has endp B. (6, -2)		-1)? D. (-6,-4)
5.	If B is the midpoint of A. $4n - 1$	\overline{AC} and $AC = 8n - 2$ B. $16n - 4$	2, what is AB? C. 4n − 2	D. 16n + 4
6.	If C is between X and A . $5n-3$	Y with XY = $6n - 4a$ B. $5n - 5$	and $CY = n + 1$, what i C. $7n - 3$	s CX? D. 7n – 5
7.	What are the measures of their measures is 8°	?		
8.	What are the measures of their measures is 8°		C. 86, 94 by angles if the different C. 86, 94	D. 41, 49 nce D. 41, 49
9.	If $\angle A$ and $\angle B$ are com A. 10°	nplementary angles w B. 20°	with $\angle A = 80^\circ$, what is C. 100°	∠ <i>B</i> ? D. 120°
10.	If $\angle A$ and $\angle B$ are sup A. 10°	plementary angles wi B. 20°	ith $\angle A = 80^\circ$, what is C. 100°	∠ <i>B</i> ? D. 120°
11.	A is at (-1, 2) and B is A. (1, 4)	at (3, 8). What are th B. (1, 5)	ne coordinates of the m C. (2, 5)	and the initial of \overline{AB} ? D. (2, 4)
12.	How many sides does A. 5	a hexagon have? B. 6	C. 7	D. 10
13.	If $AB = \sqrt{5}$ where $A = A$. 1	= (2, 0) and B = (4, y) B. 2), what could the value C. 5	of y be? D. 6
14.	If B is between A and A. $2n-4$	C on \overline{AC} with AB = $\frac{1}{2}$ B. 2n	4n - 2 and $BC = 2n - 2C. 6n$	2, what is AC? D. 6n – 4

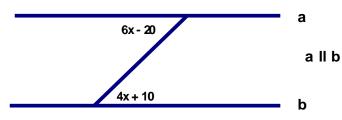

15.	\overrightarrow{BX} bisects $\angle ABC$. A. 15°	If $\angle ABX = 30^\circ$, what B. 30°	t is $\angle ABC$? C. 60°	D. 120°
16.	Which of these states A. $\overrightarrow{AB} = \overrightarrow{BA}$	ments is false? B. $\overline{AB} = \overline{BA}$	C. $\overrightarrow{AB} = \overrightarrow{BA}$	D. All are true.
17.	Which of triangle mo A. 2, 4, 7	easurements below is a B. 6, 8, 10	a right triangle? C. 11, 12, 13	D. 12, 14, 16
18.		ld be perpendicular to		
	$A. y = -\frac{1}{7}x - 3$	$B. y = \frac{1}{7}x + 3$	C. $y = 7x - 5$	D. None of the above
19.	from your starting po	oint?	miles due South, how	far are you
	A. 20 miles	B. 24 miles	C. 28 miles	D. 36 miles
20.	how far are you from	n your starting point?	8 miles due West, roun C. 59 miles	ded to the nearest mile
21.	A. 13 miles	B. 33 miles		D. 61 miles
21.	what is the other side	e length?	cm and one of the side	
	A. 71 cm	B. 72 cm	C. 117 cm	D. 118 cm
22.	How many planes do A. 6	bes a dice have? B. 4	C. 0	D. 8
23.	If three points all lie A. segment bisector C. derivatives		re said to be what? oplanar ollinear	
24.		ertical angles with ∠A what is the measureme B. 20		D. 100
25.		linear pair with $\angle A =$ what is the measureme B. 12		D. 42
26.	If $\angle A$ and $\angle B$ are v	ertical angles with $\angle A$ what is the measureme B. 80	n = n + 60	D. None of the above
27.	If two angles are ver A. True	tical angles, the sum o B. False	f their measures is 180	degrees.
28.	Complementary ang A. True	les add up to 180 degre B. False	ees.	

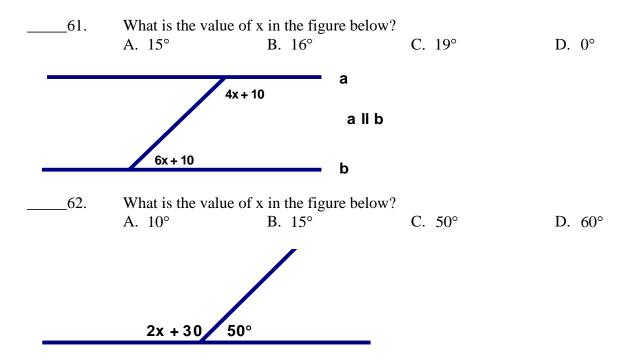
For 29-31 consider the statement "If you are nice, you have a lot of friends."

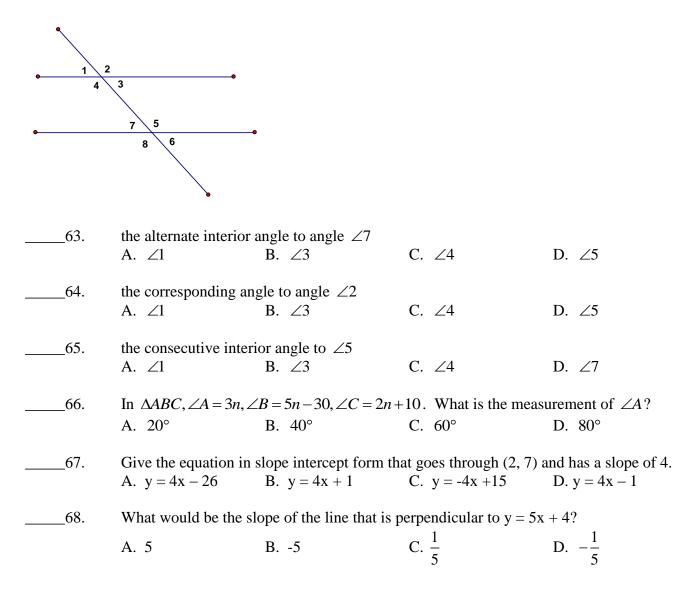

29.	If you have a lot of friends, then you are nice is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
30.	If you are not nice, you don't have a lot of friends is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
31.	If you don't have a lot of friends, then you are not nice is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
32.	Consider the statement: "If an angle is 90 degrees, it is a right angle." Is the converse of this statement true or false? A. True B. False
33.	Consider the statement: "If you live in Radford, you live in Virginia." Is the contrapositive of this statement true or false? A. True B. False
34.	The converse of all dogs like to chase cats is that some dogs like to chase cats. A. True B. False
35.	The inverse of "if you are old, you have a big head" is " if you don't have a big head, then you are not old." A. True B. False
36.	The converse of all bald men are funny looking is no bald men are funny looking.A. TrueB. False
37.	The contrapositive of "if you have a dog, you like cats" is "if you don't like cats, you love dogs."A. TrueB. False
38.	"If you like dogs, you like cats" is represented by $p \rightarrow q$. What would be the symbolic representation of "if you don't like cats, you like dogs"? A. $\sim p \rightarrow q$ B. $p \rightarrow \sim q$ C. $\sim q \rightarrow p$ D. $\sim q \rightarrow \sim p$
39.	"If you have a laptop, then you have a computer" is represented by $p \rightarrow q$. What is the symbolic representation of "If you have a computer, then you don't have a laptop"?
40.	A. $q \rightarrow p$ B. $p \rightarrow \sim q$ C. $\sim q \rightarrow p$ D. $q \rightarrow \sim p$ If $p \rightarrow q$, and $q \rightarrow r$, thenA. $r \rightarrow p$ B. $p \rightarrow r$ C. $\sim r \rightarrow p$ D. $r \rightarrow \sim p$
41.	Let p represent $\sqrt{11} = z$, and let q represent z is a rational number. What is a symbolic representation of the statement: "If $\sqrt{11} = z$, then z is not a rational number"?
42.	A. $q \rightarrow p$ B. $p \rightarrow \sim q$ C. $\sim q \rightarrow p$ D. $q \rightarrow \sim p$ If $AB = 6$ and $AB + BC = 10$, then $6 + BC = 10$ demonstrates what property?A. SubtractionB. AdditionC. SubstitutionD. Symmetric


43.			nonstrates what proper C. Substitution	-
44.	If $\angle 1 + \angle 2 = 90$ as	nd $\angle 2 = \angle 5 + \angle 6$, the	then $\angle 1 + \angle 5 + \angle 6 =$ C. Symmetric	90.
45.			emonstrates what prope C. Substitution	•

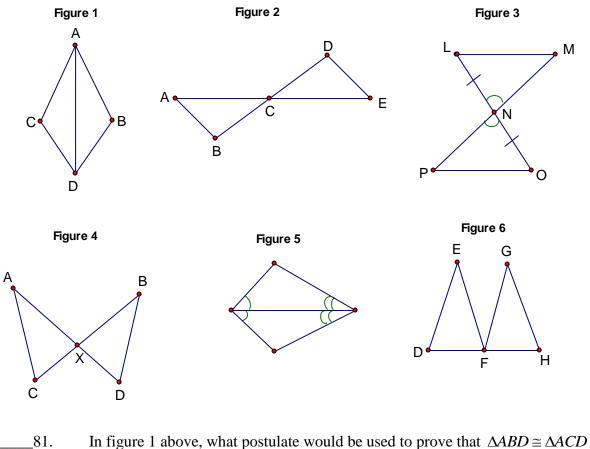
Consider this Venn diagram.

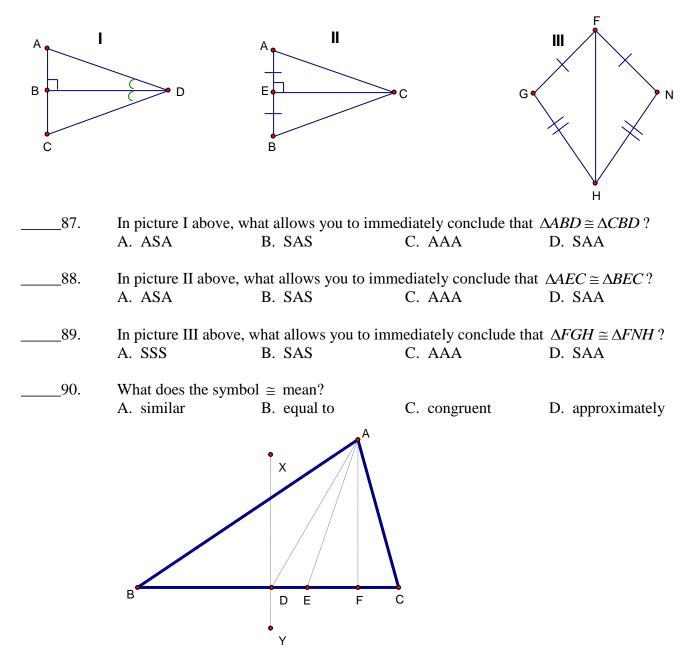



46.	According to the Ver	nn diagram, how many	are on the soccer team	1?
	A. 11	B. 16	C. 4	D. 9
47.	According to the Ver A. 1	nn diagram, how many B. 8	are playing all 3 sport C. 18	ns at the same time? D. 20
48.	According to the Ver A. 9	nn diagram, how many B. 8	play football and bask C. 33	tetball at the same time? D. 14
49.	• •	e plays either golf or to and golf, how many ki	1.0	8 play tennis.
	A. 17	B. 19	C. 22	D. 25
50.	I have a total of 14 k how many play both	ids. If 10 of my kids p tennis and soccer?	lay soccer and 12 play	tennis,
	A. 2	B. 4	C. 8	D. 10
51.		to play either soccer or ball. If the soccer team eam?		1 1
	A. 12	B. 16	C. 20	D. 26
52.		band and 16 in chorus. total kids are in either		in both chorus
	A. 26	B. 28	C. 30	D. 34



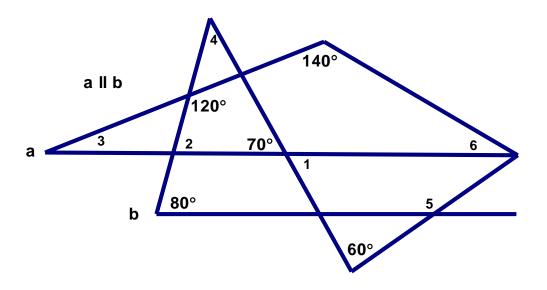
- ____53. In Figure 1 above, which is a valid conclusion?
 - A. No cat owners also own dogs.
 - B. No fish owners also own cats.
 - C. No dog owners also own fish.
 - D. No pet owner owns more than one pet.
- ____54. In Figure 2 above, which statement is true?
 - A. No bushes are flowering plants.
 - B. No roses are bushes.
 - C. Some flowering plants are bushes.
 - D. Some roses are not flowering plants.
- ____55. If lines are parallel, then alternate interior angles are equal. A. True B. False
- _____56. If lines are parallel, then corresponding angles add up to 180°. A. True B. False
- _____57. Vertical angles are equal. A. True B. False
- _____58. If lines are parallel, consecutive interior angles are equal. A. True B. False
- _____59. The sum of the angles in a triangle is 360°. A. True B. False



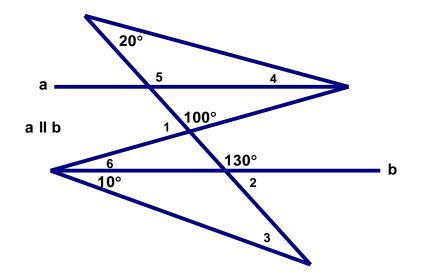

Look at the figure below and identify the given.

69.	Give the equation in slope intercept form that goes through $(2, 4)$ and is parallel to the line $y = 5x - 3$.				
	A. $y = 5x + 3$	B. $y = -5x + 12$	C. $y = -\frac{1}{5}x + 12$	D. $y = 5x - 6$	
70.	Give the equation in	slope intercept form th	nat goes through (3, 4)	and (5, 10).	
	A. $y = 3x - 4$	B. $y = -3x + 13$	C. $y = 3x - 5$	D. $y = \frac{1}{3}x + 3$	
71.	In $\triangle ABC$, $\angle A = 3n$, \angle	$\angle B = 5n - 30, \angle C = 2n - 30$	+10. What is the meas	surement of $\angle A$?	
	A. 20°	B. 40°	C. 60°	D. 80°	
72.	If $\triangle ABC$ is an isosce A. $\angle C = \angle B$	eles triangle with AB = B. $\angle A = \angle B$	= BC, which statement C. $\angle A = \angle C$	must be true? D. $AC = BC$	
73.	In ΔCWH which ang	\overline{CH}			
73.	A. $\angle C$	B. $\angle P$	C. ∠ <i>H</i>	D. $\angle W$	
74.			hat is the measuremen		
	A. 40°	B. 60°	C. 80°	D. Not possible to know	
75.		which of the following			
	A. $\angle A = \angle Z$	B. $AC = XY$	C. $XZ = BC$	D. None of the above	
76.		-	= BC and $\angle A = 40^\circ$, w		
	A. 40°	B. 70°	C. 80°	D. None of the above	
77.	If $\triangle ABC \cong \triangle XYZ$, A A. 30	AB = 38, $YZ = 28$, and B. 20	XY = 5x + 8, what is t C. 6	he value of x? D. 4	
78.	If $\Delta RST \cong \Delta HIJ$, $\angle R$ A. 10	$R = 97^{\circ}, \angle J = 37^{\circ}, \text{ and}$ B. 32	$\angle S = 4x + 14$, what is C. 46	the value of x? D. 8	
70				D . 0	
79.	A. ASA	ing does not prove con B. SSA	gruency? C. SSS	D. All prove congruency	
80.					
00.	A. $CW = WH$	$\neq \angle H$ what can you cor B. CH = CW	C. $CH = WH$	D. $\angle C = 100^{\circ}$	

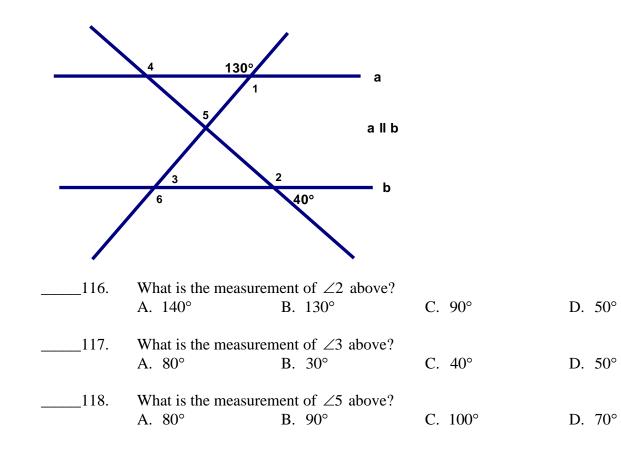
81.	In figure 1 above, what postulate would be used to prove that $\triangle ABD \cong \triangle ACD$			
	if $\overline{AC} \cong \overline{AB}$ and \overline{CD}	$\cong \overline{BD}$?		
	A. ASA	B. SAS	C. SSS	D. AAS
82.	In figure 2 above, \overline{A}	\overline{E} and \overline{BD} bisect each	other at point C.	
	What postulate would	d be used to prove that	$\Delta ABC \cong \Delta EDC ?$	
	A. ASA	B. SAS	C. SSS	D. AAS
83.	In figure 3 above, wh	nat additional informat	ion is needed to prove	
	that ΔMNL is congru	ent to ΔPNO by SAS	?	
	A. $PN = MN$	B. $PO = LM$	C. $PO = NM$	D. $NM = NO$
0.4	In figure 1 above A3	V DV and CV DV		
84.	U	X = BX and $CX = DX$.		
	-	d be used to prove that		
	A. ASA	B. SAS	C. SSS	D. AAS
85.	In figure 5 above, wh	nat postulate would be	used to prove that the	
	triangles are congrue	nt?	-	
	A. ASA	B. SAS	C. SSS	D. AAS
86.	In figure 6 above we	nich statement below d	oes NOT necessarily	
00.	•	s shown if $\Delta DEF \cong \Delta F$	•	
	A. $\triangle EDF \cong \triangle GFH$		C. $\Delta EFD \cong \Delta GHF$	
	B. $\Delta FED \cong \Delta HGF$		D. $\Delta FDE \cong \Delta FHG$	
	b. $\Delta LD \equiv \Delta 101^{\circ}$		D . $\Delta DL \equiv \Delta HO$	

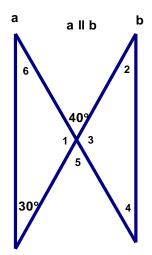

In the figure above, BD = CD, $\angle XDC = \angle AFC = 90^\circ$, and $\angle BAE = \angle CAE$.

91.	What is \overline{AD} in the tri	angle above?		
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
92.	What is \overline{AE} in the tri	e	~	
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
93.	What is \overline{XD} in the tri	angle above?		
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
94.	What is \overline{AF} in the tri	angle above?		
)+.	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
	A. Incutali	D. perpendicular disector	C. annude	D. angle Disector

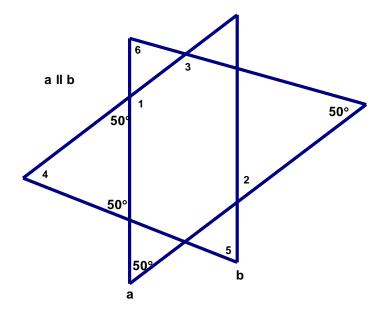

95.	Which of the measur A. 3, 4, 9	ements below could be B. 2, 8, 10	e the measurements of C. 3, 7, 9	a triangle? D. 6, 8, 16
96.	If two sides of a trian A. $2 \le m < 14$	agle are 6 cm and 8 cm B. $2 < m < 14$	what must be true above $C. 2 > m > 14$	out the third side? D. $2 \le m \le 14$
97.	In $\triangle ABC \ \angle A = 2x$, A. \overline{AB}	$\angle B = x + 60$, and $\angle C = B$. \overline{BC}	= 2x + 20. Which side C. \overline{AC}	is the longest? D. $\angle A$
98.	In $\triangle ABC$, AB = 10 c and XZ = 10 cm. W A. $\angle X > \angle A$		$C = 7 \text{ cm. In } \Delta XYZ, Y$ C. $\angle Y > \angle A$	XY = 8 cm, YZ = 9 cm, D. $\angle Y > \angle B$
99.		, B = (3, 7) and C = (6, B. $\angle B$		
100.	are ordered correctly	from longest to shorte	st	List of sides of ΔRST that
101.		B. ST, RS, TR $\angle S = 2x + 40$, and $\angle T =$ m longest to shortest.	C. RS, ST, TR = $x + 20$. Choose the l	D. ST , TR , RS list of sides of ΔRST that are
102.		B. $\overline{ST}, \overline{RS}, \overline{TR}$ D, $\angle S = x+5$, and $\angle T$ m longest to shortest.	C. $\overline{RS}, \overline{ST}, \overline{TR}$ = $3x - 35$. Choose the	D. $\overline{ST}, \overline{TR}, \overline{RS}$ e list of sides of ΔRST that are
	$\Lambda \overline{DC} \overline{CT} \overline{TD}$	$\mathbf{D} \overline{\mathbf{CT}} \overline{\mathbf{DC}} \overline{\mathbf{TD}}$	C. $\overline{TR}, \overline{RS}, \overline{ST}$	D. $\overline{ST}, \overline{TR}, \overline{RS}$
	A. RS, ST, TR	B. ST, RS, TR	C. <i>IK</i> , <i>K</i> 5,51	
Figure x+2 A • 5x-	e A C 2x+1	В. <i>31,</i> к <i>3, 1</i> к	A x+6	Figure B H 10x x+2 B
x+2	e A C 2x+1 +2 G x+10		A x+6	Figure B H 10x x+2
x+2 A • 5x-	e A C 2x+1 +2 G $x+10$ If \overline{CG} is a median of A. 2	B ΔABC in figure A abo	A x+6 A x+6 Dve, what is BC? C. 5	Figure B

106.	In $\triangle ABC$, $\angle A =$	= 59°, $\angle B$ = 60°, and $\angle c$	$C = 61^{\circ}$. What side is	s longest?
	A. \overline{AB}	B. \overline{AC}	C. \overline{CB}	D. ∠ <i>C</i>
107.	In $\triangle ABC$, AB =	= 13 cm, BC = 12 cm, a	and $AC = 16$ cm. Wh	at angle is smallest?
	A. ∠A	B. ∠ <i>B</i>	C. $\angle C$	D. None of the above
108.	Which below is	a possible measuremen	nt for an isosceles tria	ngle?
	A. 4, 4, 8	B. 7, 7, 13	C. 2, 2, 5	D. 1, 1, 2
109.	If $\triangle ABC \cong \triangle XY$	$Z, \angle A = 40^\circ, \angle C = 80^\circ$, what is the measurer	nent of $\angle X$?

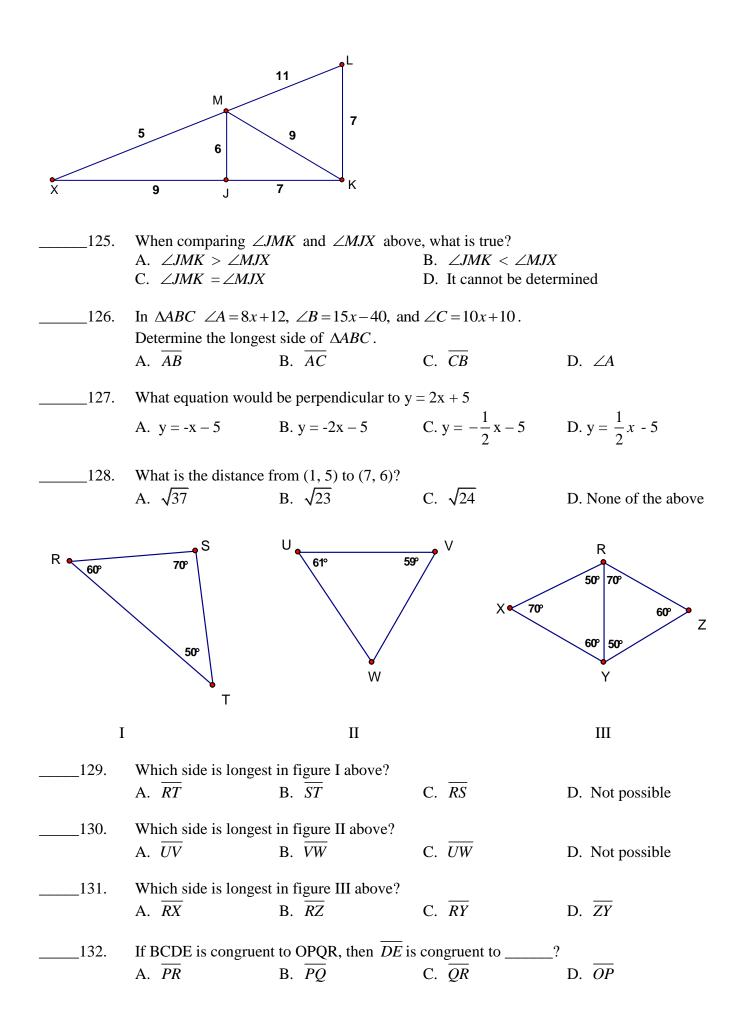

A. 40° B. 70° C. 80°	D. 60°
----------------------	--------

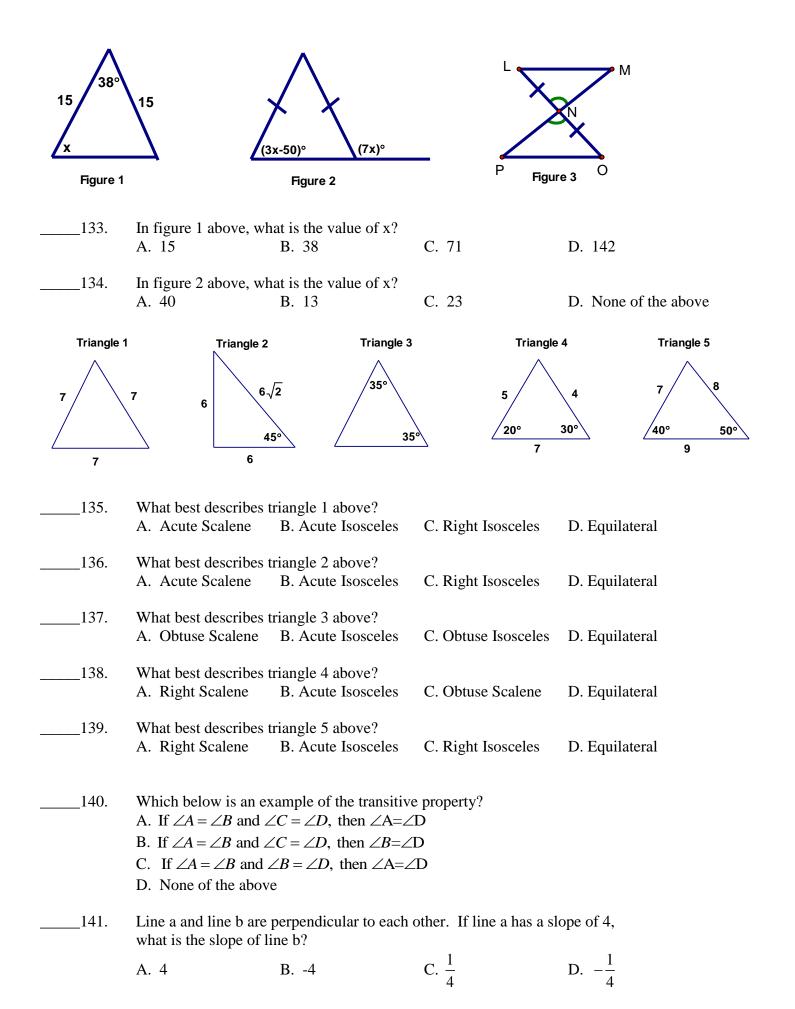


110.	What is the measure A. 20°	ment of ∠1 above? B. 30°	C. 70°	D. 80°
111.	What is the measure A. 20°	ment of $\angle 3$ above? B. 30°	C. 70°	D. 80°
112.	What is the measure A. 20°	ment of $\angle 6$ above? B. 30°	C. 70°	D. 80°



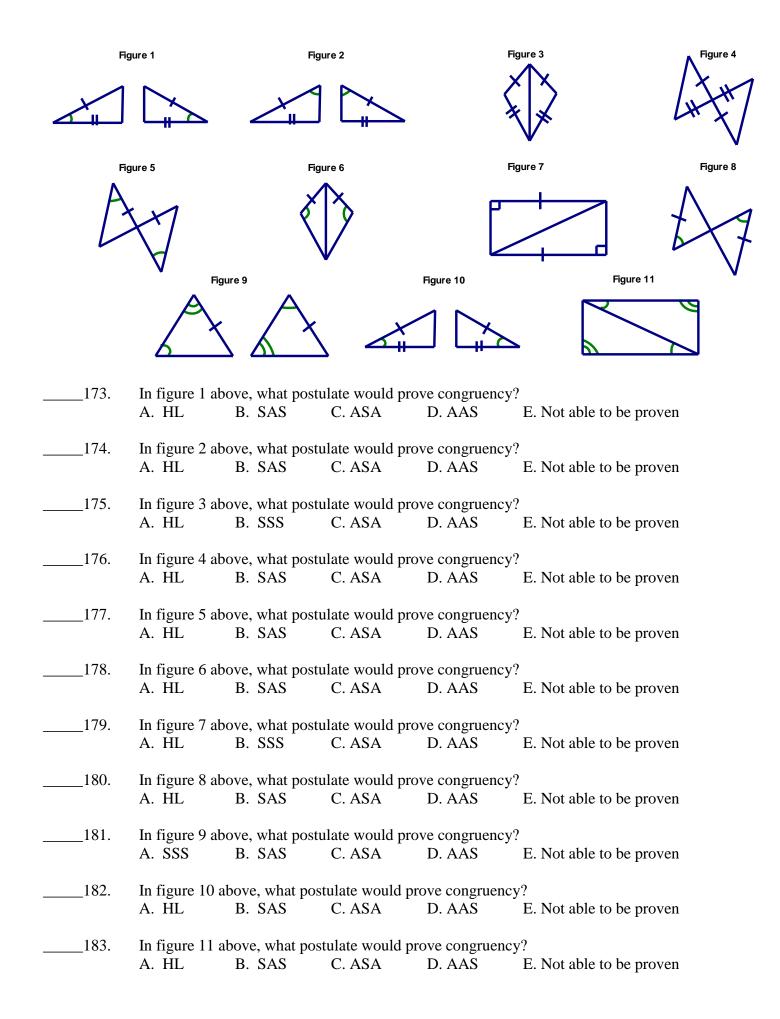
113.	What is the measure A. 80°	ment of ∠1 above? B. 30°	C. 40°	D. 50°
114.	What is the measure A. 80°	ment of $\angle 3$ above? B. 30°	C. 40°	D. 80°
115.	What is the measure A. 80°	ment of $\angle 6$ above? B. 30°	C. 40°	D. 80°





119.	What is the measure A. 140°	ment of ∠1 above? B. 40°	C. 30°	D. 10°
120.	What is the measure A. 140°	ment of ∠4 above? B. 40°	C. 30°	D. 10°
121.	What is the measure A. 140°	ment of ∠6 above? B. 40°	C. 30°	D. 10°

122.	What is the measure A. 80°	ment of ∠4 above? B. 130°	C. 40°	D. 50°
123.	What is the measure A. 80°	ment of $\angle 2$ above? B. 130°	C. 40°	D. 50°
124.	What is the measure A. 80°	ment of $\angle 6$ above? B. 130°	C. 40°	D. 50°



142.	If $\triangle ABC \cong \triangle ERT$ w A. 39°	ith AB = 10, BC = 13, B. 88°	$\angle A = 39^{\circ}$, and $\angle R = 8^{\circ}$ C. 10	8°, what is RT? D. 13
143.	What additional info A. $\overline{MN} \cong \overline{PN}$	bormation is needed to p B. $\overline{ML} \cong \overline{PO}$	Prove that ΔMNL is co C. $\angle L \cong \angle O$	ngruent to $\triangle PNO$ by ASA? D. $\angle M \cong \angle P$
144.	How many sides doe A. 5	es a hexagon have? B. 6	C. 7	D. 10
145.	What is a polygon w A. pentagon	rith 4 sides called? B. decagon	C. nonagon	D. quadrilateral
146.	If two sides of a trian A . $4 < m > 10$	ngle have the measurem B. $4 \le m \le 10$	ments of 3 and 7, what C. $4 < m < 10$	could the third leg be? D. None of the above
147.	If two sides of a tria: A. $1 < m < 15$	ngle have the measurem B. $1 \le m \le 15$	ments of 8 and 7, what C. $7 < m < 8$	could the third leg be? D. None of the above
148.	If two sides of a tria: A. $1 < m < 18$	ngle have the measurem B. $0 \le m \le 18$	ments of 9 and 9, what C. $0 < m < 9$	could the third leg be? D. None of the above
149.	If two sides of a tria: A. 1 < m < 1	ngle have the measurem B. $0 > m < 2$	ments of 1 and 1, what C. $0 < m < 2$	could the third leg be? D. None of the above
150.	In $\triangle ABC$ A = (3, 4) A. $\angle A$, B = (2, -1), and C = (B. ∠B	9, 2). Which angle is C. $\angle C$	largest? D. It can't be determined.
151.	In $\triangle ABC$ A = (4, 1) A. $\angle A$, B = (6, 8), and C = (7 B. $\angle B$	7, 3). Which angle is la C. $\angle C$	argest? D. It can't be determined.
152.	What is the distance A. $\sqrt{5}$	from (9, 8) to (7, 10)? B. $\sqrt{8}$	C. $\sqrt{10}$	D. $\sqrt{12}$
153.	Which below is the $A_{\cdot} \approx$	symbol for the word "t B. \cong	herefore"? C. Δ	D:.
154.	Which below is the $A_{\cdot} \approx$	symbol for approximat B. ≅	ely? C. Δ	D
155.	Which below is the $A_{\cdot} \approx$	symbol congruency? B. \cong	С. Δ	D

Figure 1	Figure	2 Fig	gure 3 F	īgure 4
8 cm 4 cr	x 8 cm	x x 4	40 cm 3 40 cm	7 cm 12 cm x
156.	What is the value of A. 8.9	x in figure 1 above? (B. 9.9	Round answer to the no. 10.9	earest tenth.) D. 11.9
157.	What is the value of A. 8.9	x in figure 2 above? B. 11.3	C. 12.3	D. 14.2
158.	What is the value of A. 8	x in figure 3 above? B. 9	C. 11	D. 15
159.	What is the value of A. 33.9	x in figure 4 above? B. 35	C. 37	D. 38.9
160.	Which is the equation A. $y = 2x + 7$	n that has a slope of 2 B. $y = 2x - 9$	and goes through the p C. $y = 2x + 9$	point (1, 9). D. $y = 2x - 1$
161.	Which equation belo A. $y = 2x + 7$	w is perpendicular to $y = -2x - 1$	$y = \frac{1}{2} x - 7?$ C. $y = \frac{1}{2} x + 7$	D. $y = x + 1$
162.	-	<i>p</i> : $\angle A$ is acute at " $\angle A$ is acute or $\angle B$		
163.		• •	C. $p \leftrightarrow q$ te $q: \angle B$ is acute en $\angle A$ is acute and $\angle B$ C. $p \rightarrow n \land q$	
164.	Let A = (7, 8), B = (A. 10.5	9, 13), and C = (14, 14 B. 12.4	4). How far is it to go f C. 14.3	rom A to C and then to B? D. 15.6
165.	What is the numerica	U		
166.	A. 18 What is the perimete (1, 2) (4, 6) (7, 10 A. 15	B. 22 r of a triangle with the) B. 18	C. 24 e following vertices: C. 20	D. 26 D. 22
167.	What is the midpoint A. (7, 7)	t of (4, 6) and (10, 8)? B. (5, 9)	C. (14, 14)	D. (10, 18)

168.	All of the points in this problem are collinear. B is the midpoint of \overline{AC} . X is the midpoint of \overline{AB} .				
	Y is the midpoint of \overline{BC} . D is the midpoint of \overline{XB} .				
	F is the midpoint of \overline{DB} . If DF = 2cm, what is AC?				
	A. 24	B. 28	C. 30	D. 32	
169.	Assume the statement	nt $p \rightarrow r$.			
	What is the converse	e of the inverse of the c	ontrapositive of this st	atement?	
	A. $p \rightarrow r$	B. $p \rightarrow \sim r$	C. $\sim p \rightarrow r$	D. $r \rightarrow p$	
170.	In a class of 28 students, 20 students are studying French, 12 students are studying Spanish and 8 are studying both French and Spanish. How many students in this class are studying neither French nor Spanish?				
	A. 4	B. 6	C. 8	D. 10	
171.	71. Of 20 kids, 13 play tennis and 12 play soccer. How many play both?				
	A. 2	B. 3	C. 5	D. 6	
172.	$\triangle ABC$ is a right isosceles triangle with A located at the point (2, 3) and $\angle CAB = 90^{\circ}$. If AB = 6 and AC = 6, what is BC? (Round answer to the nearest tenth.)				
	A. 6.5	B. 7.2	C. 7.8	D. 8.5	

