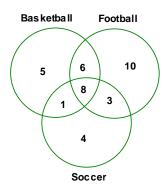
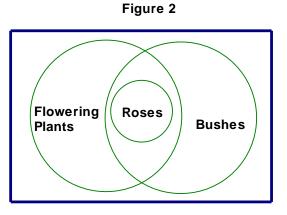
2013-14 Honors Geometry Midterm Questions

Name				
1.	What is the midpoint A. (12, 2)	of a line that has end B. (3, 1)	points at (0, 3) and (6, - C. (12, -5)	-1)? D. (3, 2)
2.	If X is the midpoint of A. $n-5$	of \overline{CN} and $CX = 2n - B$. $4n - 20$	- 10, what is CN? C. 4n	D. 40
3.	If C is between X and A. $6n - 6$	d Y with CX = 8n - 4 B. 6n - 14	and $CY = 2n + 10$, where C . $10n + 6$	at is XY? D. 10n – 6
4.	What is the midpoint A. (6, -4)	of a line that has end B. (6, -2)	points at (-2, -3) and (8 C. (3, -2)	, -1)? D. (-6,-4)
5.	If B is the midpoint of A. $4n - 1$	of \overline{AC} and $AC = 8n - B$. $16n - 4$	- 2, what is AB? C. 4n – 2	D. 16n + 4
6.	If C is between X and A. $5n - 3$	d Y with $XY = 6n - 4$ B. $5n - 5$	and $CY = n + 1$, what C. $7n - 3$	is CX? D. 7n – 5
7.	of their measures is 8	°?	ary angles if the differe	
8.	A. 39, 51What are the measures of their measures is 8A. 39, 51		C. 86, 94 ary angles if the differen C. 86, 94	D. 41, 49 nce D. 41, 49
9.	If $\angle A$ and $\angle B$ are conditioned A. 10°	mplementary angles B. 20°	with $\angle A = 80^\circ$, what is C. 100°	s ∠ <i>B</i> ? D. 120°
10.	If $\angle A$ and $\angle B$ are su A. 10°	pplementary angles v B. 20°	with $\angle A = 80^\circ$, what is C. 100°	∠ <i>B</i> ? D. 120°
11.	A is at (-1, 2) and B i A. (1, 4)	s at (3, 8). What are B. (1, 5)	the coordinates of the n C. (2, 5)	nidpoint of \overline{AB} ? D. (2, 4)
12.	If the radius of a circle A. 20π	le is 20 cm, what is th B. 40π	the circumference? (Igno C. 80π	ore units) D. 400π
13.	What is the area of a A. 6π	circle with a radius of B. 12π	f 6 cm? (Ignore units) C. 18π	D. 36π
14.	What is the perimeter A. 20 cm	r of a square with an a B. 25 cm	nrea of 25 cm ² ? C. 50 cm	D. 625 cm
15.	\overrightarrow{BX} bisects $\angle ABC$. A. 15°	If $\angle ABX = 30^\circ$, what B. 30°	at is $\angle ABC$? C. 60°	D. 120°

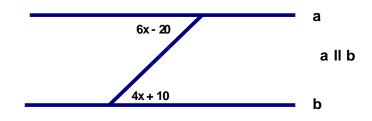

16.	Which of these statements is false A. $\overrightarrow{AB} = \overrightarrow{BA}$ B. $\overrightarrow{AB} = \overrightarrow{BA}$	$=$ \longrightarrow \longrightarrow	D. All are true.
17.	Which description best describes a A. a regular convex octagon C. a regular concave octagon	B. an irregular concave octa	-
18.	Which equation would be perpend	licular to the $y = -\frac{1}{7}x + 3?$	
	A. $y = -\frac{1}{7}x - 3$ B. $y = \frac{1}{7}x$	+3 C. $y = 7x - 5$	D. None of the above
19.	If you walk 12 miles due East and from your starting point?	then 16 miles due South, how	far are you
	A. 20 miles B. 24 miles	C. 28 miles	D. 36 miles
20.	If you walk 35 miles due North an		nded to the nearest mile
	how far are you from your startingA. 13 milesB. 33 miles	-	D. 61 miles
21.	If the diagonal distance of a rectar what is the other side length?	igle is 97 cm and one of the sid	es is 65 cm,
	A. 71 cm B. 72 cm	C. 117 cm	D. 118 cm
22.	How many planes does a dice hav A. 6 B. 4	e? C. 0	D. 8
23.	If three points all lie on a line, the A. segment bisectors C. derivatives	points are said to be what? B. coplanar D. collinear	
24.	If $\angle A$ and $\angle B$ are vertical angles and $\angle B = 4n + 20$, what is the me		
	A. 10 B. 20	C. 80	D. 100
25.	If $\angle A$ and $\angle B$ are a linear pair wi and $\angle B = 9n + 20$, what is the me		
	A. 22 B. 12	C. 52	D. 42
26.	If $\angle A$ and $\angle B$ are vertical angles and $\angle B = 2n + 10$, what is the me A. 110 B. 80		D. None of the above
27.	If two angles are vertical angles, the A. TrueB. False		
28.	Complementary angles add up to A. True B. False	180 degrees.	

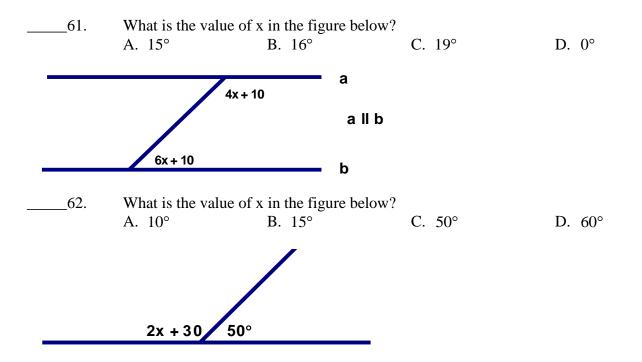
For 29-31 consider the statement "If you are nice, you have a lot of friends."


29.	If you have a lot of friends, then you are nice is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
30.	If you are not nice, you don't have a lot of friends is the of above. A. Converse B. Inverse C. Contrapositive D. Sublimation
31.	If you don't have a lot of friends, then you are not nice is the of above.A. ConverseB. InverseC. ContrapositiveD. Sublimation
32.	Consider the statement: "If an angle is 90 degrees, it is a right angle." Is the converse of this statement true or false? A. True B. False
33.	Consider the statement: "If you live in Radford, you live in Virginia." Is the contrapositive of this statement true or false? A. True B. False
34.	The converse of all dogs like to chase cats is that some dogs like to chase cats.A. TrueB. False
35.	The inverse of "if you are old, you have a big head" is " if you don't have a big head, then you are not old." A. True B. False
36.	The converse of all bald men are funny looking is no bald men are funny looking.A. TrueB. False
37.	The contrapositive of "if you have a dog, you like cats" is "if you don't like cats, you love dogs." A. True B. False
38.	"If you like dogs, you like cats" is represented by $p \rightarrow q$. What would be the symbolic representation of "if you don't like cats, you like dogs"? A. $\sim p \rightarrow q$ B. $p \rightarrow \sim q$ C. $\sim q \rightarrow p$ D. $\sim q \rightarrow \sim p$
39.	"If you have a laptop, then you have a computer" is represented by $p \rightarrow q$. What is the symbolic representation of "If you have a computer, then you don't have a laptop"?
	A. $q \rightarrow p$ B. $p \rightarrow \neg q$ C. $\neg q \rightarrow p$ D. $q \rightarrow \neg p$
40.	If $p \to q$, and $q \to r$, then A. $r \to p$ B. $p \to r$ C. $\sim r \to p$ D. $r \to \sim p$
41.	Let p represent $\sqrt{11} = z$, and let q represent z is a rational number. What is a symbolic representation of the statement: "If $\sqrt{11} = z$, then z is not a rational number"? A. $q \rightarrow p$ B. $p \rightarrow \sim q$ C. $\sim q \rightarrow p$ D. $q \rightarrow \sim p$
	$\mathbf{x}, \mathbf{y}, \mathbf{y} = \mathbf{D}, \mathbf{p}, \mathbf{y} = \mathbf{D}, \mathbf{q}, \mathbf{p} = \mathbf{D}, \mathbf{q}, \mathbf{p}$


42.	BC = 10, then 6 + BC B. Addition	= 10 demonstrates wha C. Substitution	at property? D. Symmetric
43.	NP, then AB = BC den B. Addition	nonstrates what propert C. Substitution	y? D. Symmetric
44.	,	ten $\angle 1 + \angle 5 + \angle 6 =$ C. Symmetric	
45.	BC, then AB = XY de B. Addition	monstrates what proper C. Substitution	rty? D. Symmetric

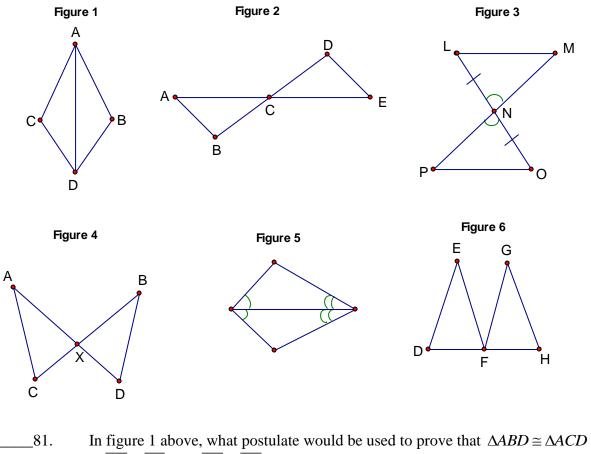
Consider this Venn diagram.

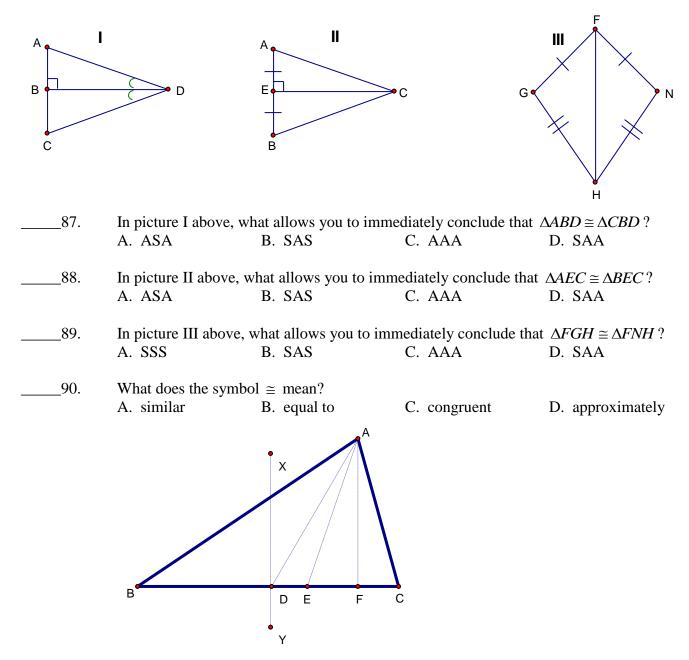



46.	According to the Venn diagram, how many are on the soccer team?			
	A. 11	B. 16	C. 4	D. 9
47.	According to the Ver A. 1	nn diagram, how many B. 8	are playing all 3 sport C. 18	D. 20
48.	According to the Ver A. 9	nn diagram, how many B. 8	play football and bask C. 33	tetball at the same time? D. 14
49.	•	e plays either golf or to and golf, how many ki	ennis. 14 play golf and ds are in my class?	8 play tennis.
	A. 17	B. 19	C. 22	D. 25
50.	I have a total of 14 k how many play both	• •	play soccer and 12 play	tennis,
	A. 2	B. 4	C. 8	D. 10
51.		ball. If the soccer tear	baseball. 4 of the 30 n has 18 members, how	
	A. 12	B. 16	C. 20	D. 26
52.	and band, how many	total kids are in either		
	A. 26	B. 28	C. 30	D. 34



- ___53. In Figure 1 above, which is a valid conclusion?
 - A. No cat owners also own dogs.
 - B. No fish owners also own cats.
 - C. No dog owners also own fish.
 - D. No pet owner owns more than one pet.
- ____54. In Figure 2 above, which statement is true?
 - A. No bushes are flowering plants.
 - B. No roses are bushes.
 - C. Some flowering plants are bushes.
 - D. Some roses are not flowering plants.
- ____55. If lines are parallel, then alternate interior angles are equal. A. True B. False
- _____56. If lines are parallel, then corresponding angles add up to 180°. A. True B. False
- _____57. Vertical angles are equal. A. True B. False
- _____58. If lines are parallel, consecutive interior angles are equal. A. True B. False
- _____59. The sum of the angles in a triangle is 360°. A. True B. False




Look at the figure below and identify the given.

69.	Give the equation in parallel to the line y		hat goes through $(2, 4)$	and is
	A. $y = 5x + 3$	B. $y = -5x + 12$	C. $y = -\frac{1}{5}x + 12$	D. $y = 5x - 6$
70.	Give the equation in	slope intercept form th	nat goes through (3, 4)	and (5, 10).
	A. $y = 3x - 4$	B. $y = -3x + 13$	C. $y = 3x - 5$	D. $y = \frac{1}{3}x + 3$
71.	In $\triangle ABC$, $\angle A = 3n$, \angle	$\angle B = 5n - 30, \angle C = 2n - 30$	+10. What is the meas	surement of $\angle A$?
	A. 20°	B. 40°	C. 60°	D. 80°
72.	If $\triangle ABC$ is an isosce A. $\angle C = \angle B$	eles triangle with AB = B. $\angle A = \angle B$	= BC, which statement C. $\angle A = \angle C$	must be true? D. $AC = BC$
73.	In ΔCWH which ang	\overline{CH}		
73.	A. $\angle C$	B. $\angle P$	C. ∠ <i>H</i>	D. $\angle W$
74.			hat is the measuremen	
	A. 40°	B. 60°	C. 80°	D. Not possible to know
75.		which of the following		
	A. $\angle A = \angle Z$	B. $AC = XY$	C. $XZ = BC$	D. None of the above
76.		-	= BC and $\angle A = 40^\circ$, w	
	A. 40°	B. 70°	C. 80°	D. None of the above
77.	If $\triangle ABC \cong \triangle XYZ$, A A. 30	AB = 38, $YZ = 28$, and $B. 20$	XY = 5x + 8, what is t C. 6	the value of x? D. 4
78.	If $\Delta RST \cong \Delta HIJ$, $\angle R$ A. 10	$R = 97^{\circ}, \angle J = 37^{\circ}, \text{ and}$ B. 32	$\angle S = 4x + 14$, what is C. 46	the value of x? D. 8
-				D . 0
79.	A. ASA	ing does not prove con B. SSA	gruency? C. SSS	D. All prove congruency
00				
80.	If in ΔCWH , $\geq W =$ A. CW = WH	$\neq \angle H$ what can you cor B. CH = CW	C. $CH = WH$	D. $\angle C = 100^{\circ}$

01.	In figure 1 above, what postulate would be used to prove that $\Delta ABD = \Delta ACD$			
	if $\overline{AC} \cong \overline{AB}$ and \overline{C}	$\overline{D} \cong \overline{BD}$?		
	A. ASA	B. SAS	C. SSS	D. AAS
82.	In figure 2 above, A	AE and BD bisect	each other at point C.	
	What postulate wor	ald be used to prove	that $\triangle ABC \cong \triangle EDC$?	
	A. ASA	B. SAS	C. SSS	D. AAS
83.	In figure 3 above, v	vhat additional info	rmation is needed to prove	:
	that ΔMNL is cong	ruent to ΔPNO by	SAS?	
	A. $PN = MN$	B. $PO = LM$	C. $PO = NM$	D. $NM = NO$
84.	In figure 4 above, A	AX = BX and CX =	DX.	
	What postulate wor	ald be used to prove	that $\triangle AXC \cong \triangle BXD$?	
	A. ASA	B. SAS	C. SSS	D. AAS
85.	In figure 5 above, v	vhat postulate woul	d be used to prove that the	
	triangles are congru	-	Ĩ	
	A. ASA	B. SAS	C. SSS	D. AAS
86.	In figure 6 above y	which statement hel	ow does NOT necessarily	
00.	In figure 6 above, which statement below does NOT necessarily describe the triangles shown if $\Delta DEF \cong \Delta FGH$?			
	0			
	A. $\triangle EDF \cong \triangle GFH$		C. $\triangle EFD \cong \triangle GHF$	
	B. $\Delta FED \cong \Delta HGF$	1	D. $\Delta FDE \cong \Delta FHG$	

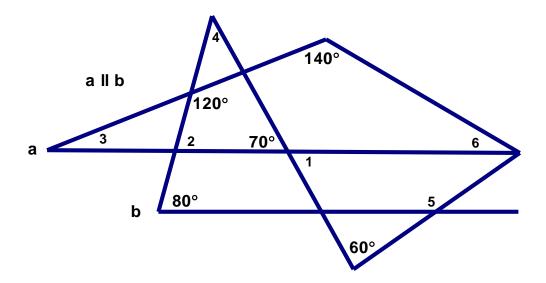
In the figure above, BD = CD, $\angle XDC = \angle AFC = 90^\circ$, and $\angle BAE = \angle CAE$.

91.	What is \overline{AD} in the tri	iangle above?		
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
92.	What is \overline{AE} in the tri	angle above?		
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
93.	What is \overline{XD} in the tri	iangle above?		
	A. median	B. perpendicular bisector	C. altitude	D. angle bisector
94.	What is \overline{AF} in the tri	iangle above?		
>	A. median	B. perpendicular bisector	C. altitude	D. angle bisector

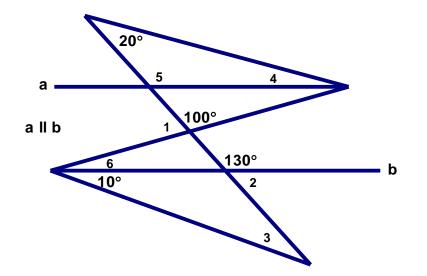
95.	Which of the measure A. 3, 4, 9	rements below could be B. 2, 8, 10	e the measurements of C. 3, 7, 9	a triangle? D. 6, 8, 16
96.	If two sides of a trian A. $2 \le m < 14$	ngle are 6 cm and 8 cm B. $2 < m < 14$	what must be true ab C. $2 > m > 14$	out the third side? D. $2 \le m \le 14$
97.	In $\triangle ABC \ \angle A = 2x$, A. \overline{AB}	$\angle B = x + 60$, and $\angle C = B$. \overline{BC}	= 2x + 20. Which side C. \overline{AC}	the longest? D. $\angle A$
98.	In $\triangle ABC$, $AB = 10$ and $XZ = 10$ cm. W A. $\angle X > \angle A$			$XY = 8 \text{ cm}, YZ = 9 \text{ cm},$ $D. \angle Y > \angle B$
99.), B = (3, 7) and C = (6 B. $\angle B$		
100.	are ordered correctly	from longest to shorte	est	list of sides of ΔRST that
101.		B. ST, RS, TR $\angle S = 2x + 40$, and $\angle T$ om longest to shortest.	C. RS, ST, TR = $x + 20$. Choose the	D. $\overline{ST}, \overline{TR}, \overline{RS}$ list of sides of ΔRST that are
102.		B. $\overline{ST}, \overline{RS}, \overline{TR}$ 0, $\angle S = x+5$, and $\angle T$ om longest to shortest.	C. $\overline{RS}, \overline{ST}, \overline{TR}$ = 3x-35. Choose the	D. $\overline{ST}, \overline{TR}, \overline{RS}$ e list of sides of ΔRST that are
	A. $\overline{RS}, \overline{ST}, \overline{TR}$	B. $\overline{ST}, \overline{RS}, \overline{TR}$	C. $\overline{TR}, \overline{RS}, \overline{ST}$	D. $\overline{ST}, \overline{TR}, \overline{RS}$
Figure	e A			Figure B
x+2 A • 5x-	C 2x+1 +2 G x+10	• В	A x+6	H 10x x+2 B
103.	If \overline{CG} is a median of A. 2	f $\triangle ABC$ in figure A ab B. 4	ove, what is BC? C. 5	D. None of the above
104.	If \overline{BH} is an altitude A. 8	of $\triangle ABC$ in figure B a B. 9	above, what is BC? C. 11	D. None of the above
105.	Two sides of a triang third side? A. 8 cm	gle are 4 cm and 10 cm B. 2 cm	. What is a possible m C. 15 cm	D. 14 cm
			2 	

106.	In $\triangle ABC$, $\angle A = 59^{\circ}$	$a^{\circ}, \angle B = 60^{\circ}, \text{ and } \angle C =$	61°. What side is long	gest?
	A. \overline{AB}	B. \overline{AC}	C. \overline{CB}	D. ∠ <i>C</i>
107.	In $\triangle ABC$, AB = 13	cm, $BC = 12$ cm, and	AC = 16 cm. What an	gle is smallest?
	A. ∠A	B. $\angle B$	C. $\angle C$	D. None of the above
108.	-	ssible measurement fo		
	A. 4, 4, 8	B. 7, 7, 13	C. 2, 2, 5	D. 1, 1, 2
109.	If $\triangle ABC \cong \triangle XYZ, \angle$	$A = 40^\circ, \angle C = 80^\circ, \text{ wh}$	at is the measurement	of $\angle X$?
	A. 40°	B. 70°	C. 80°	D. 60°
110.		elogram with $\angle A = 7x$	and $\angle B = 3x - 20$,	
	what is the measurer			
	A. 20°	B. 40°	C. 80°	D. 140°
111.	If ABCD is an isosc	eles trapezoid with $\angle A$	$=50^\circ$, what is $\angle C$?	
	A. 50°	B. 100°	C. 130°	D. 140°
112.	Which of the follow	ing is not always true a	bout a parallelogram?	
112.	A. the diagonals bis		B. opposite sides ar	
	C. opposite angles a		D. diagonals are per	1 0
113.	Opposite angles are	not always congruent i	n a	
	A. rhombus	B. parallelogram		D. rectangle
114.	\overline{NO} is the base of iso	osceles trapezoid NRP	D. If $\angle N = 4x + 10$ and	d $\angle O = 6x + 4$,
	what is the value of	x?		
	A. 2	B. 3	C. 16.6	D. 18.2
115.	If ABCD is an isosc	eles trapezoid with AB	= CD, $\angle B$ is congrue	nt to
	A. ∠A	B. $\angle C$	C. $\angle D$	D. $\angle X$
116.	Diagonals are alway	s perpendicular in a		
	A. parallelogram	B. trapezoid	C. rhombus	D. rectangle
	۸	5		
		B		

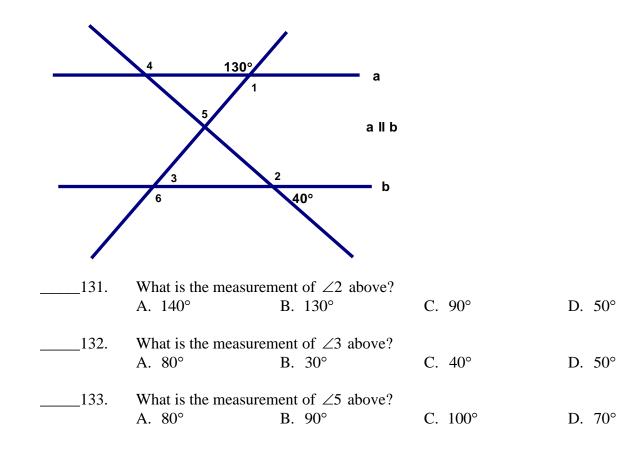
_____117. If AE = 4n - 8, DE = 2n + 6, and CE = n + 4 in the parallelogram above, what is the value of n? A. -2 B. 2 C. 4 D. 7

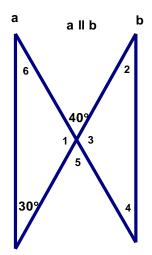

С

Е

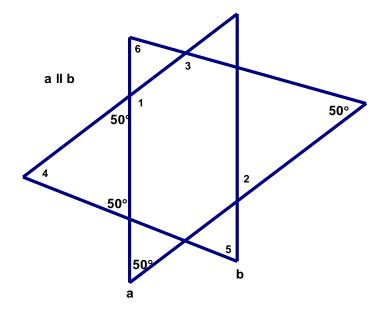

D

118. If $\angle ADC = 80^{\circ}$ in the parallelogram above, what is $\angle DCB$? A. 40° B. 80° C. 100° D. 120°

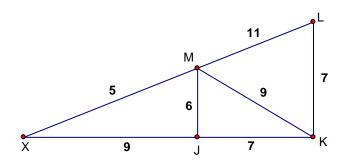

119.	If in the parallelogram above $DC = 3n + 20$, $BC = n + 10$, and $AB = 4n - 10$, what is n?			
	A5	B. $6\frac{2}{3}$	C. 30	D. None of the above
120.		ng could be a fourth po are (0, 0), (6, 0) and (3	1 0	
	A. (9, 4)	B. (6, 4)	C. (4, 6)	D. (4,9)
121.	-	-	and goes through the p	
	A. $y = 2x + 7$	B. $y = 2x - 9$	C. $y = 2x + 9$	D. $y = 2x - 1$
122.	Which equation belo	w is perpendicular to	$y = \frac{1}{2} x - 7?$	
	A. $y = 2x + 7$	B. $y = -2x - 1$	C. $y = \frac{1}{2}x + 7$	D. $y = x + 1$
123.	Let p and q be	<i>p</i> : $\angle A$ is acute	q: $\angle B$ is acute	
	What would represent " $\angle A$ is acute or $\angle B$ is acute"?			
	A. $p \wedge q$	B. $p \lor q$	C. $p \leftrightarrow q$	D. $p \rightarrow q$
124.	Assume the following	ig: $p: \angle A$ is acut	te $q: \angle B$ is acute	n: $\angle C$ is obtuse
	Will of record d non-monor	at "If (Cia alterna the	an (Alia courts and /I	Dia aanta "??



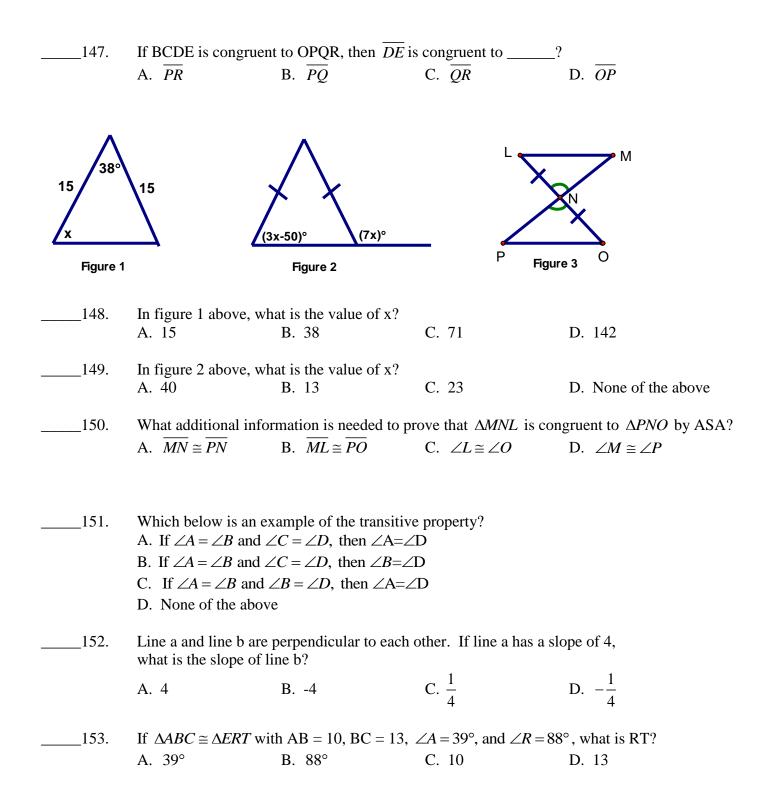
125.	What is the measure A. 20°	ment of ∠1 above? B. 30°	C. 70°	D. 80°
126.	What is the measure A. 20°	ment of ∠3 above? B. 30°	C. 70°	D. 80°
127.	What is the measure A. 20°	ment of $\angle 6$ above? B. 30°	C. 70°	D. 80°



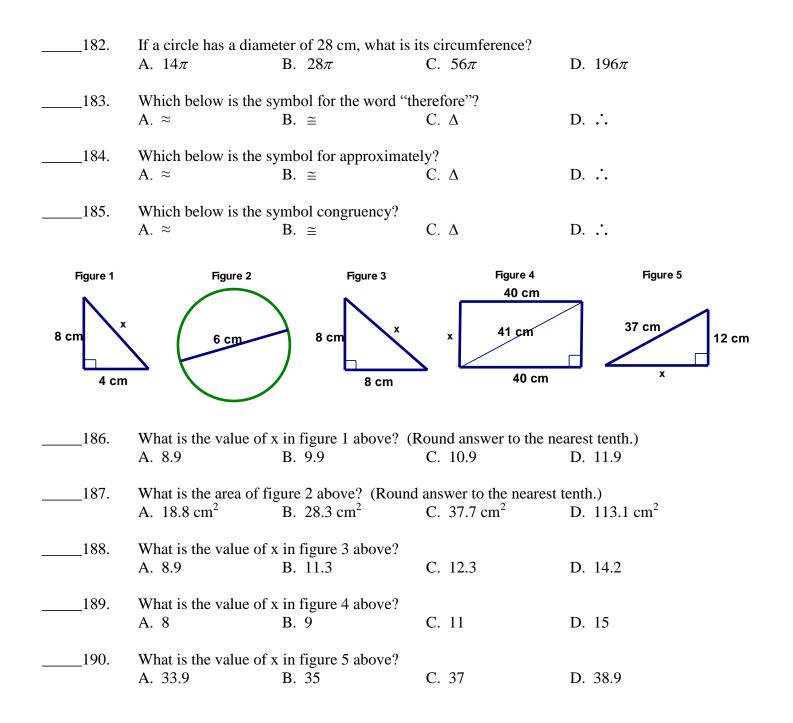
128.	What is the measure A. 80°	ement of ∠1 above? B. 30°	C. 40°	D. 50°
129.	What is the measure A. 80°	ement of $\angle 3$ above? B. 30°	C. 40°	D. 80°
130.	What is the measure A. 80°	ement of $\angle 6$ above? B. 30°	C. 40°	D. 80°

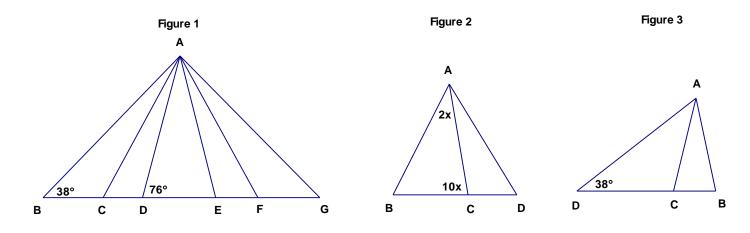


134.	What is the measure A. 140°	ment of ∠1 above? B. 40°	C. 30°	D. 10°
135.	What is the measurer A. 140°	ment of ∠4 above? B. 40°	C. 30°	D. 10°
136.	What is the measures A. 140°	ment of ∠6 above? B. 40°	C. 30°	D. 10°



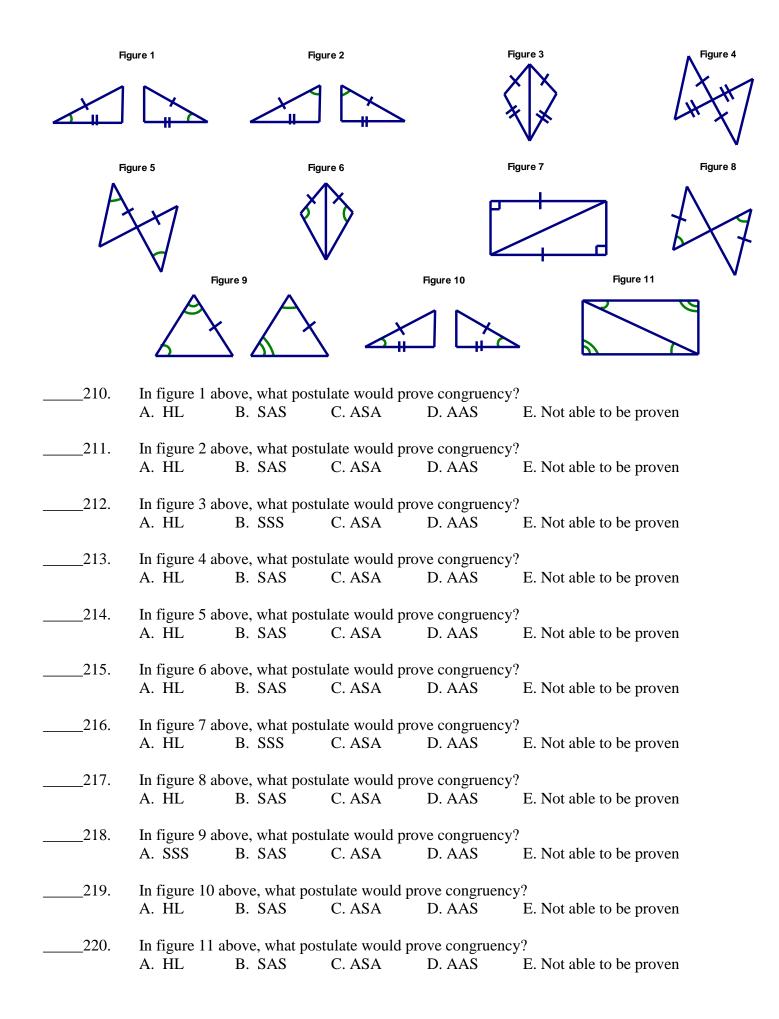
137.	What is the measure A. 80°	ment of ∠4 above? B. 130°	C. 40°	D. 50°
138.	What is the measure A. 80°	ment of ∠2 above? B. 130°	C. 40°	D. 50°
139.	What is the measure A. 80°	ment of ∠6 above? B. 130°	C. 40°	D. 50°


- $\begin{array}{c|c} \hline 140. & \text{When comparing } \angle JMK \text{ and } \angle MJX \text{ above, what is true?} \\ A. & \angle JMK > \angle MJX & B. & \angle JMK < \angle MJX \\ C. & \angle JMK = \angle MJX & D. \text{ It cannot be determined} \end{array}$
- 141. In $\triangle ABC \ \angle A = 8x + 12$, $\angle B = 15x 40$, and $\angle C = 10x + 10$. Determine the longest side of $\triangle ABC$. A. \overline{AB} B. \overline{AC} C. \overline{CB} D. $\angle A$
- 142. What equation would be perpendicular to y = 2x + 5A. y = -x - 5 B. y = -2x - 5 C. $y = -\frac{1}{2}x - 5$ D. $y = \frac{1}{2}x - 5$



Figur	re 1	Figure 2		Figure 3
2n + 20 4n - 40	140 80	4n + 5	4n	5n + 50
<u>2n</u>	2n + 20	4n - 5	4n + 50 4n	6n + 30 6n + 10
154.	What is the value of A. 16	n in figure 1 above. B. 20	C. 25	D. 50
155.	What is the value of A. 16	n in figure 2 above. B. 20	C. 25	D. 50
156.	What is the value of A. 16	n in figure 3 above. B. 20	C. 25	D. 50
157.	Which equation below A. $y = 2x - 4$	w would be perpendice B. $y = -2x + 7$	ular to $y = \frac{1}{2}x - 4?$ C. $y = \frac{1}{2}x + 4$	D. $y = 8x + 4$
158.		-	of the side of a square of the square equal the C. 4	perimeter of the square? D. 10
159.		pelow for $\angle A$ and $\angle B$, possibly consecutive i B. 45°	would make the angles nterior angles? C. 90°	vertical angles D. 145°
160.			ofessor when he was at C. Eminem	
161.	Which of the following congruent but do not A. rhombus	bisect each other?	l have diagonals that a	
162.		B. rectanglewing do the diagonalsB. rectangle	C. trapezoid bisect the angles? C. trapezoid	D. parallelogramD. parallelogram
163.	If ABCD is a parallel A. 3	logram with $\angle A = x$ a B. 31	nd $\angle D = 2x - 3$, what C. 61	is the value of x? D. 121
164.	Opposite angles are a A. trapezoid	llways congruent in a(B. quadrilateral	n) C. parallelogram	D. isosceles trapezoid
165.	Not all rectangles hav A. diagonals that bis B. diagonals that are	ect each other	C. four congruent sid D. consecutive angle	des es that are supplementary.

166.	Which of the following is NOT true of paralA. The opposite sides are congruentB. The opposite angles are congruent	-	es are complementary sect each other
167.	What is D in parallelogram ABCD if $A = (0 A. (2, 4) B. (9, -3)$	0, 0), B = (7, 0), and C C. (16, 4)	= (9, 4)? D. (9, 11)
168.	What is D in parallelogram ABCD if $A = (0 A. (13, 19) B. (28, 4))$	0, 0), $B = (15, 0)$, and C. (-2, 4)	C = (13, 4)? D. (13, -11)
169.	If ABCD is a parallelogram with $\angle A = 7x$ a what is the measurement of $\angle C$? A. 10° B. 40°	and $\angle B = 3x - 20$, C. 70°	D. 140°
170.	If ABCD is an isosceles trapezoid with $\angle A$ A. 32° B. 64°	= 32°, what is $\angle C$? C. 146°	D. 148°
171.	Which of the following is NOT always true A. the diagonals bisect each other B. opposite angles are equal	about a parallelogram C. opposite sides are D. diagonals are per	equal in length
172.	Opposite angles are NOT always congruent A. rhombus B. parallelogram	in a C. trapezoid	D. rectangle
173.	Diagonals are always perpendicular in a A. parallelogram B. trapezoid	C. rhombus	D. rectangle
174.	If two sides of a triangle have the measurem A. $4 < m > 10$ B. $4 \le m \le 10$	the the two sets of 3 and 7, what $c c$. $4 < m < 10$	could the third leg be? D. None of the above
175.	If two sides of a triangle have the measurem A. $1 < m < 15$ B. $1 \le m \le 15$	nents of 8 and 7, what of C. 7< m < 8	could the third leg be? D. None of the above
176.	If two sides of a triangle have the measurem A. $1 < m < 18$ B. $0 < m \le 18$	the neutron of 9 and 9, what of C . $0 < m < 9$	could the third leg be? D. None of the above
177.	If two sides of a triangle have the measurem A. $1 < m < 1$ B. $0 > m < 2$	the the tents of 1 and 1, what of C . $0 < m < 2$	could the third leg be? D. None of the above
178.	In $\triangle ABC$ A = (3, 4), B = (2, -1), and C = (9 A. $\angle A$ B. $\angle B$	0, 2). Which angle is la C. $\angle C$	argest? D. It can't be determined.
179.	In $\triangle ABC$ A = (4, 1), B = (6, 8), and C = (7, A. $\angle A$ B. $\angle B$	3). Which angle is lat C. $\angle C$	rgest? D. It can't be determined.
180.	What is the distance from (9, 8) to (7, 10)? A. $\sqrt{5}$ B. $\sqrt{8}$	C. $\sqrt{10}$	D. $\sqrt{12}$
181.	If a circle has a diameter of 28 cm, what is i A. 14π B. 28π	ts area? C. 56π	D. 196π



191.		ABG and △DAE are iso ral triangle. Find the n B. 16°	osceles triangles and neasurement of ∠EAF C. 18°	'. D. 40°
192.	In figure 2 above, wh A. 16°	hat is the measurement B. 24°	of $\angle CAD$ if $\triangle ABD$ is C. 40°	s an equilateral triangle? D. 46°
193.	In figure 3 above, AI A. 15°	$B = AC = DC$. What is B. 28°	s the measurement of . C. 34°	∠ <i>CAB</i> ? D. 38°
194.	If the area of a circle A. 56.5 cm	is 1017.88 cm ² , what B. 100.5 cm	is the circle's circumfe C. 113.1 cm	prence? D. 131.9 cm
195.	How many sides doe A. 9	s a dodecagon have? B. 10	C. 12	D. 15
196.	Let A = (7, 8), B = (A. 10.5	9, 13), and C = (14, 14 B. 12.4	How far is it to go fC. 14.3	rom A to C and then to B? D. 15.6
197.	B is between A and C What is the numerica	C. $AB = 2n, BC = n + l length of AB?$	11, and AC = 44.	
	A. 18	B. 22	C. 24	D. 26
198.	What is the perimeter $(1, 2)$ $(4, 6)$ $(7, 10)$	r of a triangle with the	following vertices:	
	A. 15	B. 18	C. 20	D. 22
199.	In $\triangle ABC$, X is the m	idpoint of \overline{AB} , Y is the	the midpoint of \overline{BC} , and	d
	Z is the midpoint of A. 9	$AC \cdot A = (2, 5) B = B \cdot 10$	(10, 15) C = (18, 17 C. 12	What is XY?D. 13
200.		hypotenuse of 13 cm	and its area is 30 cm.	
	A. 18	r of the right triangle? B. 22	C. 24	D. 30

201.	All of the points in this problem are collinear. B is the midpoint of \overline{AC} . X is the midpoint of \overline{AB} . Y is the midpoint of \overline{BC} . D is the midpoint of \overline{XB} .				
	1	\overline{DB} . If DF = 2cm, wh			
	A. 24	B. 28	C. 30	D. 32	
202.	Assume the statement	nt $p \rightarrow r$.			
	What is the converse	e of the inverse of the c	contrapositive of this st	atement?	
	A. $p \rightarrow r$	B. $p \rightarrow \sim r$	C. $\sim p \rightarrow r$	D. $r \rightarrow p$	
203.	In a class of 28 students, 20 students are studying French, 12 students are studying Spanish and 8 are studying both French and Spanish. How many students in this class are studying neither French nor Spanish?				
	A. 4	B. 6	C. 8	D. 10	
204.	to the line that goes	through the points (1, 4	ugh the point (2, 3) and 4) and (7, 5). C. y = 6x + 12		
205.	-	-	ocated at the point (2, 3 d answer to the nearest C. 7.8		

206.	. In figure 1 above, what postulate would prove congruency?				cy?
	A. HL	B. SAS	C. ASA	D. SSS	E. Not able to be proven
207.	In figure 2 a	bove, what pos	stulate would p	rove congruen	cy?
	A. SSS	B. SAS	C. ASA	D. AAS	E. Not able to be proven
208.	In figure 3 a	bove, what pos	stulate would p	rove congruen	cy?
	A. HL	B. SAS	C. ASA	D. AAS	E. Not able to be proven
209.	In figure 4 a	hove what no	stulate would r	rove congruen	2119
207.	0	· •	-	0	•
	A. HL	B. SAS	C. ASA	D. SSS	E. Not able to be proven

