Geometry Chapter 5 Practice Test 2 (2013-14)

In the figure above, BD = CD, $\angle XDC = \angle AFC = 90^\circ$, and $\angle BAE = \angle CAE$.

1.	What line is a median of $\triangle ABC$?
2.	What line is an angle bisector of $\triangle ABC$?
3.	What line is a perpendicular bisector of $\triangle ABC$?
4.	What line is an altitude of $\triangle ABC$?

State if the following measurements could be the side lengths of a triangle.

5.	3, 4, 6	Yes	No	6.	10, 5, 4	Yes	No
7.	8, 8, 15	Yes	No	8.	7, 4, 7	Yes	No
9.	3, 3, 6	Yes	No	10.	1, 2, 3	Yes	No

11. In $\triangle ABC \ \angle A = 4x$, $\angle B = 3x + 50$, and $\angle C = 4x + 20$. Determine the longest and shortest side of $\triangle ABC$.

Largest = _____ Shortest = _____

Tell what the third side of a triangle must fall between given the two side measurements.

13. 20,1

14. 8, 20

15. 10, 10

16. In $\triangle ABC$ A = (3, 4), B = (2, -1), and C = (9, 2). Determine which angle is largest and which is smallest.

Largest =	Smallest =

17. Find BC if \overline{CG} is a median of $\triangle ABC$.

Consider the figure below. Write an inequality (>, <) relating the two angles. Figure is not drawn to scale and the measurements are not mathematically true.

21. In $\triangle ABC$, A = (4, 9), B= (2, -1), and C = (-6, 5). What are the coordinates of X if \overline{AX} is a median of $\triangle ABC$? Name the longest side in the figures below.

