$$
\begin{array}{r}
9.4-13 \\
3^{\prime \prime} \text { Trig }
\end{array}
$$

If addirs fractions, what do
we do?
$\frac{2}{17}+\frac{3}{17}=\frac{2+3}{17}=\frac{5}{17}$

$$
\frac{6+1}{11}=\frac{6}{11}+\frac{1}{11}
$$

$$
\frac{x+3}{3}=\frac{x}{3}+\frac{3}{3}=\frac{x}{3}+1
$$

$\frac{2+4 \sqrt{7}}{2}$
(1) $\frac{2}{2}+\frac{4 \sqrt{7}}{2}=1+2 \sqrt{7}$
(2) $\frac{\frac{1}{2}+\frac{2}{2} \sqrt{7}}{2}=1+2 \sqrt{7}$
(1) $\frac{8+6 \sqrt{6}}{2}$
$\frac{4+3}{8+6 \sqrt{6}} 7$

$$
4+3 \sqrt{6}
$$

(2) $\begin{aligned} \frac{10+\sqrt{40}}{2} & \sqrt{40}\end{aligned}=\sqrt{2.2 .25}$

$$
\frac{\frac{L^{5}+\dot{2}}{2} \sqrt{10}}{\sum_{1}} \underset{5+\sqrt{10}}{ }
$$

(3) $\begin{aligned} \frac{6+\sqrt{8}}{4} & \sqrt{8}\end{aligned}=\sqrt{2 \cdot 2 \cdot 2}$

$$
\begin{aligned}
& \frac{6^{3}+\frac{1}{2} \sqrt{2}}{42} \\
& \frac{3+\sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{array}{lr}
\text { (4) } & \frac{8 \pm \sqrt{-20}}{2} \\
& \sqrt{-20}=\sqrt{-1 \cdot 2 \cdot 2.5} \\
\frac{8 \pm 2 i \sqrt{5}}{2,} & 2 i \sqrt{5} \\
4 \pm i \sqrt{5} &
\end{array}
$$

(13) On toni.ghes Hm

If n is a positive integer
that is divisible by 12 and 16 , then n must also be diusisible
$\begin{array}{ll}\text { by } & 12=12,24,36,42,60 \\ 16=16,32,45,54\end{array}$
$\begin{array}{ll}\text { A) } 28 \\ \text { B.) } 32 & \text { Factors } \\ \text { C. } 48 & 12=1,2,3(4) \\ \text { D. } 96 & 16=12,2,4 \\ \text { E.) } 192 & 12.16=192 \\ & \frac{4}{4}=48\end{array}$
(1) If $16^{w+2}=2^{\prime \prime}$, whet is w ?

$$
\left(2^{4}\right)^{w+2}=2^{11}
$$

$$
2^{4 w+8}=2^{11}
$$

$$
\begin{gathered}
4 w+8=11 \\
\frac{+8-8}{4 w=\frac{3}{4}} \\
w=\frac{3}{4}
\end{gathered}
$$

What is the $105^{\text {th }}$ digit after
the decimal point in (5)

- 1376425

where about the $218^{\prime \prime}$ digit? (1)
$31 \times 7=217$

$$
\begin{aligned}
& \text { (5) } \begin{aligned}
& \frac{-15+\sqrt{-75}}{10} \quad \sqrt{-75}=\sqrt{-1 \cdot 3 \cdot 5 \cdot 5} \\
& 5 i \sqrt{3}
\end{aligned} \\
& \frac{-{ }^{-3}}{-15+8: \sqrt{3}} \frac{10}{2} \\
& \frac{-3+i \sqrt{3}}{2} \text { or } \frac{-3}{2}+\frac{i \sqrt{3}}{2} \\
& \text { SAT thought } \\
& \text { Give me a number teal is divisible } \\
& \begin{aligned}
\text { by } 8 \text { and 10. } \begin{array}{l}
\text { satan } \\
8=1,2,4,8 \\
10
\end{array}=1,2,5,10
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9-4-13 } \\
& 4^{\text {en }} \text { Trig } \\
& \text { what do you do in } \\
& \frac{2}{17}+\frac{3}{17} \frac{2+3}{17}=\frac{5}{17} \\
& \frac{6+1}{11}=\frac{6}{11}+\frac{1}{11} \\
& \frac{x+6}{6}=\frac{x}{6}+\frac{6}{6}=\frac{x}{6}+1 \\
& \text { (1) } \frac{8+4 \sqrt{3}}{4} \\
& \text { (1) } \frac{8}{4}+\frac{x^{\prime} \sqrt{3}}{X_{1}}=2+\sqrt{3} \\
& \text { (2) } \frac{\frac{2}{8}+\dot{Y} \sqrt{3}}{4 H_{1}}=2+\sqrt{3} \\
& \text { (2) } \frac{6+2 \sqrt{7}}{2} \\
& \frac{3+\frac{1}{2} \sqrt{7}}{28}=3+\sqrt{7}
\end{aligned}
$$

(3) $\begin{aligned} & \frac{4+\sqrt{20}}{2} \sqrt{20} \\ &=\sqrt{2 \cdot 2 \cdot 5} \\ & 2 \sqrt{5}\end{aligned}$
$\frac{x^{2}+2 \sqrt{5}}{z}=2+\sqrt{5}$
(4) $\begin{array}{cc}\frac{6+\sqrt{18}}{3} & \sqrt{18}=\sqrt{2 \cdot 3 \cdot 3} \\ 3 \sqrt{2}\end{array}$

$$
\frac{6^{2}+3 \sqrt{3} \sqrt{2}}{3_{1}}=2+\sqrt{2}
$$

(5) $\frac{8+\sqrt{20}}{4} \quad \sqrt{20}=2 \sqrt{5}$

$$
\frac{\frac{4}{8}+\frac{1}{2} \sqrt{5}}{42}=\frac{4+\sqrt{5}}{2} \text { or } \frac{4}{2}+\frac{\sqrt{5}}{2}=2+\frac{\sqrt{5}}{2}
$$

(6) $\frac{9+\sqrt{-9}}{3}=\frac{3+i s}{3}=3+i$

What is the smallest number
that is divisible by 4 and 6?

$$
\frac{12}{4} \quad \frac{12}{6}-L \mathrm{Cm}
$$

$$
\begin{gathered}
8 \text { and } 20 \\
40
\end{gathered}
$$

$$
\text { If } n \text { is a positive integer }
$$

$$
\text { that is divisible by } 6 \text { and } 20 \text {, }
$$

$$
\text { then } n \text { must be divisible by }
$$

$$
\text { a.) } 80 \quad n=60
$$

$$
\xrightarrow{\text { b.) } 50} \underset{\text { c.) } 60}{\text { d.) } 40}
$$

$$
\text { d.) } 40
$$

$$
\begin{aligned}
& \text { Which disc would be in the } \\
& 70^{\text {t" }} \text { shut in } 6
\end{aligned}
$$

$$
\begin{aligned}
& 8 \times 9^{722}=70
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \begin{array}{rlrl}
\frac{6 \pm \sqrt{-18}}{9} & \sqrt{-18} & =\sqrt{-1 \cdot 2.33} \\
3 i \sqrt{2}
\end{array} \\
& \frac{2 \pm \frac{1}{3} i \sqrt{2}}{x_{3}}=\frac{2 \pm i \sqrt{2}}{3} \\
& \text { SAT thought } \\
& \text { which digit is in the } 71^{\text {st }} \text { ser }
\end{aligned}
$$

