$$
\begin{aligned}
& 9 \cdot 30-13 \\
& 3^{n-1} \text { Triy }
\end{aligned}
$$

(9) $8 x^{3}-125$

$$
\begin{aligned}
& 8 x-125 \text { o f } 5 \text { S } \\
& (2 x-5)\left(4 x^{2}+10 x+25\right)
\end{aligned}
$$

(28)

$$
\begin{aligned}
& a - 5 \longdiv { a ^ { 2 } - 2 5 } \\
& a = 5 \longdiv { a + 5 } \\
& =\frac{a^{2}+0 a-25}{5 a-25} \\
& \frac{-54-25}{0}
\end{aligned}
$$

(29)

$$
\begin{aligned}
& a^{2}+a+2 \frac{a+1}{a^{3}+2 a^{2}+3 a+2} \\
&=a^{3}+a^{2}+2 a \\
& a^{2}+a+2 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (14) } 45 n^{3} y-18 n^{4} y \\
& 9 n^{3} y(5-2 n) \\
& \text { (18) }\left(2 k^{3}+2 k\right)+\left(-2 k^{2}-7\right) \\
& 2 k\left(k^{2}+1\right)+-7\left(k^{2}+1\right) \\
& \left(k^{2}+1\right)(2 k-7)
\end{aligned}
$$

(6)

$$
\begin{aligned}
& 9 x^{2}+30 x y+25 y^{2} \quad 1,25 \\
& (9 x \quad 1,5)(x \quad 25 y) \\
& (9 x \quad 25)(x \quad 1 y) \\
& (9 x \quad 5)(x \quad 5 y) \\
& (3 x+1 y)(3 x+25 y) \\
& (3 x+5 y)(3 x+5 y) \\
& (3 x+5 y)^{2}
\end{aligned}
$$

SAT 2-3 16,17

$$
\begin{array}{ll}
2-4 & 20 \\
2-6 & 9,11
\end{array}
$$

(10)

$$
\begin{aligned}
& 64 n^{3}+y^{3} \\
& (4 n+y)\left(16 n^{2}-4 n y+y^{2}\right)
\end{aligned}
$$

New Practice

$$
\begin{array}{r}
x - 4 \longdiv { x + \frac { - 1 3 } { x - 2 } } \\
\frac{x-6 x-5}{x^{2}-2 x} \\
\frac{-4 x-5}{-4 x+8}
\end{array}
$$

$$
\begin{array}{r}
x^{3}-36 x=0 \\
x\left(x^{2}-36\right)=0 \\
x(x+6)(x-6)=0 \\
x \neq \quad x \quad x=-6 \quad x=6
\end{array}
$$

How many possible ways could you factor $6 x^{2}+17 x+5 ? \frac{5}{1.5}$

$$
\begin{aligned}
& (2 x+1)(3 x 5) \\
& (2 x+5)(2 x+1) \\
& (6 x+1)(x+5) \\
& (6 x+5)(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& 9-3 v-13 \\
& 4^{4-} T /: 9
\end{aligned}
$$

(25) $\frac{4 x-5}{5 x-6}$
$5 x-6 \neq 0$
$\frac{+6 \rightarrow 6}{\frac{5 x}{5} \neq \frac{6}{5}}$
$x \neq 1 \frac{1}{5}$
(34) $20 x^{2}+41 x-9=0$

$$
\begin{array}{rl}
a=20 \\
b & =41 \\
c=-9 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
4 a c=-720 & x=\frac{-41 \pm \sqrt{1681--720}}{40} \\
x=\frac{-41 \pm \sqrt{2401}}{40} \\
x=\frac{-41+49}{40} \quad \text { or } \quad x=\frac{-41-49}{40} \\
x=\frac{8}{40}=\frac{1}{5}=2 \quad x=\frac{-90}{40}=-2 \frac{1}{4}
\end{array}
$$

$$
\begin{aligned}
& \text { (7) } 2 x^{2}+15 x-50 \\
& \left(2 x^{2}+20 x\right)+(5 x-50) \\
& \begin{array}{ll}
\frac{-100}{1,100} \\
2 \times, 50 \\
4 & 25 \\
-5,20
\end{array} \\
& \hline(x+10)+-5(x+10)
\end{aligned}
$$

$$
(x+10)(2 x-5)
$$

How many combinations exist

as possibilities when

$$
\begin{aligned}
& \text { factoring } 6 x^{2}+43 x+7 ? \\
& (6 x+1)(x+7)
\end{aligned}
$$

$$
(6 x+7)(x+1)
$$

$$
(3 x+1)(2 x+7)
$$

$$
(3 x+7)(2 x+1)
$$

$$
\begin{array}{lll}
\text { SAT } & 2-3 & \# 16,17 \\
2-4 & \# 20 \\
2-6 & \# 9,11
\end{array}
$$

(13)

$$
\begin{aligned}
& 3 n^{4} y+9 n^{6} y^{2} \\
& 3 n^{4} y\left(1+3 n^{2} y\right)
\end{aligned}
$$

SAT 2-6
(9) Avy. Score $=80$

$$
\begin{gathered}
5 \text { playes } \begin{array}{c}
80 \\
\times 5 \\
400 \\
50 \\
\hline
\end{array}+100+100+100=400
\end{gathered}
$$

(29)

$$
\begin{gathered}
\frac{a+1}{a ^ { 2 } + a + 2 \longdiv { a ^ { 3 } + 2 a ^ { 2 } + 3 a + 2 }} \begin{array}{c}
\frac{-a^{3}+a^{2}+2 a}{} \downarrow \\
\frac{a^{2}+a+2}{0}+a+2 \\
0
\end{array}
\end{gathered}
$$

