$$
\begin{aligned}
& \text { G-13-13 } \\
& 5^{2 n} \text { Geo } \\
& \text { Geo Ch. } 1 \text { PT 1 } \\
& \text { (ai) } \angle E B C=G_{n-8, ~ w h a t ~ i s ~} \angle E B D \text { ? }
\end{aligned}
$$

(22) $\angle E B D=4 n+16$ and $\angle D B C=6 n+10$ whit is numerical value of $\angle E B C$.

(23) $\angle F B E=80^{\circ}$ what is $\angle E B D$?

(24) If $\angle E B C=2 n+6$ and
$\angle F B E=4 n-54$, what is the numerical value of $\angle D B C$?

$$
\begin{gathered}
4 n-54=2 n+6 \\
-2 n \quad-2 n \\
\hline 2 n-54=6 \\
+54+54 \\
\hline 2 n=60 \\
n=30
\end{gathered}
$$

(22) $A=(7,15) \quad B=(5,10)$ $A B=$?
$D=\sqrt{\Delta x^{2}+\Delta y^{2}}$
$=\sqrt{2^{2}+5^{2}}$
$=\sqrt{4+25}$
$=\sqrt{29}$
≈ 5.4
(25) Point A is at $(1,10)$ and
B is at $(4,1)$. If B is the midpoint of $\overline{A C}$, whet are
the coordinates of C ?

(17)

(9) V is between R end Y. $R Y=30 \quad V Y=n+10 \quad R V=$?

(10) $(-1,2)$ to $(3,-1)$.

$$
\begin{aligned}
D & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{16+9} \\
& =\sqrt{25} \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \angle A+\angle B=90^{\circ} \\
& \downarrow \quad \downarrow \\
& 2 n+6+3 n+4=90^{\circ} \\
& \frac{5 n+10=90^{\circ}}{-10-10} \\
& \frac{5 n}{5}=\frac{80}{5} \\
& n=16 \quad D=\sqrt{\Delta x^{2}+0 y^{2}} \\
& \angle B-3 n+4 \\
& 3(16)+4 \\
& 48+4 \\
& 52^{\circ}
\end{aligned}
$$

Could these be the measurements of a right triangle.

$$
\begin{aligned}
& 8,10,12 \\
& 8^{2}+10^{2}=12^{2} ? \\
& 64+100 \neq 144
\end{aligned}
$$

$$
\begin{aligned}
& 9-13-13 \\
& 6^{2 i} 6 e 0
\end{aligned}
$$

Ch. 1 PT 1

(21) $\angle E B C=6 n-8 \quad \angle E B D=$?

(22) $\angle E B D=4 n+16$

$$
\angle D B C=6 n+10
$$

$$
\begin{array}{r}
\text { Numer:en value of } \angle E B C \\
28+28=56
\end{array}
$$

(23) $\angle F B E=80^{\circ}$
$\angle E B D=? 40$

(24) $\angle E B C=2 n+6$

$$
\angle F B E=4 n-54
$$

$$
\text { Numerieal value of } \angle D B C
$$

$$
\begin{gathered}
4 n-54=2 n+6 \\
=2 n-5=\frac{-2 n}{2 n-54}=6 \\
+54+54 \\
\hline 2 n=60 \\
n=30
\end{gathered}
$$

(27) $A=(2,15) \quad B=(5,10) \quad A B=$?

$$
\begin{aligned}
D & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& =\sqrt{2^{2}+5^{2}} \\
& =\sqrt{4+25} \\
& \sqrt{29} \\
& \approx 5.4
\end{aligned}
$$

30

$$
\begin{gathered}
\angle A+\angle B=180^{\circ} \\
\downarrow \\
n+40+9 n+20=180^{\circ} \\
10 n+60=180 \\
-60-60 \\
\hline 10 n=120 \\
n=12 \\
9 n+20 \\
9(12)+20 \\
108+20=128^{\circ}
\end{gathered}
$$

$$
\angle B=9 n+20
$$

(25)

$$
\begin{aligned}
& \text { Pt. } A=(110) \\
& \text { Pr } B=(4,1)
\end{aligned}
$$

B is midpoint of $\overline{A C} . C=$?

(10)

$$
\begin{aligned}
&(-1,2) \quad(3,-1) \\
& D=\sqrt{\Delta x^{2}+\Delta y^{2}} \\
&=\sqrt{4^{2}+3^{2}} \\
& \sqrt{16+9} \\
& \sqrt{25} \\
& 5
\end{aligned}
$$

(14) If x is the midpoint of $\overline{C N}$ and $C x=6 n+2$, what is $C N$?

(18)

$$
\begin{aligned}
&(-3,4)(0,14) \\
& D=\sqrt{\Delta x^{2}+\Delta y^{2}} \\
&=\sqrt{3^{2}+10^{2}} \\
&=\sqrt{9+100} \\
&=\sqrt{109} \\
& \approx 10.4
\end{aligned}
$$

$$
\begin{gathered}
a^{2}+40^{2}=41^{2} \\
a^{2}+1600=1681 \\
-1600-1600 \\
\hline a^{2}=81 \\
a=9
\end{gathered}
$$

(ven) Could a right Δ have legs

$$
\begin{gathered}
\text { of } \quad 5,6 \text {, and ? ? } \\
5^{2}+6^{2} \stackrel{?}{=} 7^{2} \\
25+36=49 \\
61=49 \\
\text { No }
\end{gathered}
$$

