9-11-13
$3^{\text {re }}$ Trig
Chapter I P+I
(136) $n^{-3} \cdot y^{5} \cdot n^{-2} \cdot y^{-3}$

$$
\begin{gathered}
\frac{y^{5}}{n^{3} n^{2} y^{3}}=\frac{y y y y x}{n m n n y y y} \\
\frac{y^{2}}{n^{5}}
\end{gathered}
$$

(37) $\frac{c^{3} w^{-5} h^{-1}}{c^{-1} w^{-2} h}$

$$
\frac{c^{3} c^{1} w^{2}}{w^{5} h h}=\frac{c c c c x w}{\text { wNownow } h h}
$$

$$
=\frac{c^{4}}{w^{3} h^{2}}
$$

(31) $\sqrt[4]{12960}$

$$
\begin{aligned}
& \sqrt[4]{1296}=\sqrt[4]{22 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5} \\
& 2 \cdot 3 \sqrt[4]{25} \\
& 6 \sqrt[4]{10}
\end{aligned}
$$

(41) $\left(2 s^{-3} t^{2} u^{-1} d\right)^{-3}$

$$
\begin{gathered}
\left(\frac{2 t^{2} d}{s^{3} u}\right)^{-1 \cdot 3} \\
\left(\frac{s^{3} u}{2 t^{2} d}\right)^{3} \\
\frac{s^{3} u}{2 t^{2} d} \cdot \frac{s^{3} v}{2 t^{2} d} \cdot \frac{s^{3} v}{2 t^{2} d}=\frac{s^{9} u^{3}}{8 t^{6} d^{3}}
\end{gathered}
$$

(46) If $2^{k+m}=128$ and $3^{m}=27$, what is the value of 2^{k} ?

$$
\begin{aligned}
& 3^{m}=27 \quad \therefore m=3 \\
& 2^{7}=128 \\
& 2^{k+3}=2^{7} \quad \therefore k=4 \\
& \alpha^{k}=2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16
\end{aligned}
$$

(27) $\sqrt{-600}$

$$
600 \quad \sqrt{7 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5}
$$

$$
\text { (2) }{ }_{10}^{200} \AA_{10}^{100} \quad 10.5 i \sqrt{6}
$$

(4)

$$
\left.\begin{array}{rl}
5(7 x-12)+2(3 x+5) & =7 x-6 \\
35 x-60+6 x+10 & =7 x-6 \\
41 x-50 & =7 x-6 \\
-7 x
\end{array}\right] \begin{aligned}
-7 x & +50 \\
\hline 34 x-50 & =-6 \\
\frac{34 x}{34} & =\frac{44}{34} \\
x & =1 \frac{10}{34}=1 \frac{5}{17}
\end{aligned}
$$

$$
\begin{aligned}
& 9-11-13 \\
& 4^{\pi n} T r i y
\end{aligned}
$$

Chapter I Pt 1 Questions
(1)

$$
\begin{aligned}
& 2(3 n-1)=(3 n-1)=2(2 n+5) \\
& 6 n \sqrt{-2}-3 n+1=4 n+10 \\
& 3 n-1=4 n+10 \\
& 3 n=3 n \\
& \hline-1=n+10 \\
& -10 \quad-10 \\
& -11=n
\end{aligned}
$$

(46) If $2^{k+m}=128$ and $3^{m}: 27$, then whet is the value of 2^{k} ?

$$
\begin{array}{ll}
2^{7}=128 & 3^{\frac{m}{3}}=27 \\
k+m=7 & 2^{k}=2^{4}=16 \\
\downarrow J=7 &
\end{array}
$$

