$$
\begin{aligned}
& \frac{3^{2-9} \operatorname{Tr}: 9}{} \frac{\tan x \cdot \csc x}{\sec x} \\
& \frac{\frac{\sin x}{\cos x} \cdot \frac{1}{\sin x}}{\frac{1}{\cos x}} \\
& \frac{\frac{1}{\cos ^{2} x}}{\cos ^{2} x} \\
& \frac{\tan ^{2} x}{\sec ^{2} x} \\
& \frac{\sin ^{2} x}{\cos ^{2} x} \\
& \frac{1}{\cos ^{2} x} \\
& \frac{\sin ^{2} x}{\cos ^{2} x} \cdot \frac{1}{\cos ^{2} x}
\end{aligned}
$$

(3) $\cos \left(90^{\circ}-\theta\right)$

$$
\begin{gathered}
=\cos 90^{\circ} \cdot \cos \theta+\sin 90^{\circ} \cdot \sin \theta \\
\downarrow \quad \cos \theta+1 \sin \theta \\
0+\sin \theta \\
\sin \rightarrow
\end{gathered}
$$

(4) $\cos \left(270^{\circ}-\theta\right)$

$$
\begin{gathered}
\cos 270^{\circ} \cdot \cos \theta+\sin 270^{\circ} \cdot \sin \theta \\
0 \cdot \cos \theta+-1 \cdot \sin \theta \\
0-\sin \theta \\
-\sin \theta
\end{gathered}
$$

(5)

$$
\begin{aligned}
& (1-\sin x)(1+\sin x) \\
& 1-\sin ^{2} x \\
& \cos ^{2} x
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \frac{\cos ^{2} x}{1-\sin x} \\
& \frac{1-\sin ^{2} x}{1-\sin x} \\
& \frac{(1-\sin x)(1+\sin x)}{1-\sin x} \\
& 1+\sin x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \frac{\cos \theta}{\sin \theta \cdot \cot ^{2} \theta} \\
& \frac{\cos \theta}{\frac{\sin \theta}{1} \cdot \frac{\cos ^{2} \theta}{\sin ^{2} \theta}}=\frac{\sin \theta}{1} \cdot \frac{\cos 6 \cdot \cos \theta}{\sin \sin } \\
& \frac{\cos \theta}{1} \cdot \frac{\sin \theta}{\cos ^{2} \theta} \\
& \frac{\sin \theta}{\cos \theta} \\
& \tan \theta
\end{aligned}
$$

$$
\begin{gathered}
5-9-14 \\
4^{5 n} \operatorname{Tr}: y \\
(1+\cos x)(1-\cos x) \\
1-\cos ^{2} x \\
\sin ^{2} x \\
\left(\cos ^{2} x+\sin ^{2} x=1\right)
\end{gathered}
$$

(3)

$$
\begin{aligned}
& \frac{\tan x \cdot \csc x}{\sec x} \\
& \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} \\
& \frac{1}{\cos x} \\
& \frac{1}{\cos x}
\end{aligned}
$$

(4)

$$
\frac{\cos \theta}{\frac{\cos ^{2} \theta}{\sin \theta}}
$$

$\frac{\cos \theta}{1} \cdot \frac{\sin \theta}{\cos \theta \cos \theta}$

$$
\frac{\sin \theta}{\cos \theta}
$$

$\tan \circlearrowleft$

