(1)
$$y = 3 \sin(\frac{2}{b})$$

Amplitude = 3
period = $\frac{360}{b} = \frac{360}{2} = [80]$
phase shifts None

Phase shift =
$$\frac{-C}{6}$$

$$\begin{array}{c} \textcircled{(3)} y = 4 & \sin((2) \bigcirc + 10) \\ Amp = 4 \\ per:ud = \frac{360}{6} - \frac{360}{2} - 180^{\circ} \\ phase shift = \frac{-10}{b} = \frac{-10}{2} = -5 \\ \hline move left \\ + moved right \\ \end{array}$$

$$3 \quad y = 2 \quad \cos\left(\frac{3}{b}6^{2} - 30^{\circ}\right)$$

$$A = p = 2$$

$$Period = \frac{360}{3} = 120^{\circ}$$

$$Phuse Skift = \frac{-c}{b} = \frac{30}{3} = 10^{\circ}$$

$$(right)$$

Give equation of sin
function with

$$amp = 6$$

 $period = 180^{\circ}$
 $phase shift = +2(right)$
 $y = 6 sin(20-4)$
 $b = 2$
 $b = 2$
 $c = -4$

Amp = 8
Period = 90'
Phase Shift =
$$\tau = 20'$$
 right
 $y = 8 \sin(40 - 80)$
Period = $\frac{360}{6}$ Phase $s = \frac{-6}{5}$
 $90 = \frac{360}{6}$ Phase $s = \frac{-6}{7}$
 $90 = \frac{360}{6}$ $20 = \frac{-6}{7}$
 $90 = 360$ $-6 = 80$
 $b = 4$ $(= -80)$

Amp =
$$2$$

Period = 720
Phase shift = 8
 $y = 2 \sin(\frac{1}{2}0 - 4)$
 $y = 3 \sin(\frac{1}{2}0 - 4)$
Period = $\frac{360}{5}$ Ph. Sh = $\frac{-C}{5}$
 $\frac{720}{1} = \frac{360}{5}$ Ph. Sh = $\frac{-C}{5}$
 $\frac{720}{1} = \frac{360}{5}$ Ph. Sh = $\frac{-C}{5}$
 $-C = 4$
 $\frac{7205}{720} = \frac{360}{720}$ $(=-4)$

$$Amp = 6$$

$$Per: d = 1440$$

$$Phase Shift = 12^{6}$$

$$Y = 6 Sin(46 - 3)$$

$$\frac{Per: d = 360}{1 - 6} \quad P.S. = \frac{-C}{-6}$$

$$\frac{12^{6}}{1 - 6} = \frac{-C}{-6}$$

$$\frac{12^{6}}{1 - 6} = \frac{-C}{-6}$$

$$\frac{1440}{1 - 6} = \frac{360}{1440} \quad C = -3$$

$$b = \frac{1}{4}$$

Amp= 1
Period=1080
P.S. =
$$6^{\circ}$$

 $\gamma = \sin(\frac{1}{2}\Theta - Q)$
period = $\frac{360}{6}$
 $\frac{1080}{1} = \frac{360}{6}$
 $\frac{10806}{1080} = \frac{360}{1080}$
 $1 = \frac{1}{3}$
 $0 = \frac{1}{3}$
 $0 = \frac{1}{3}$
 $0 = -2$

$$y = a \sin(b\theta)$$

$$f = a \sin(b\theta)$$

$$f = a \sin(b\theta + c)$$

$$f = a \sin(b\theta + c)$$

$$f = b$$

$$f = b$$

$$Amp = 3$$

$$Per:od = \frac{360}{b} = \frac{360}{4} = 90^{\circ}$$

$$Phase slift \rightarrow none$$

Phase shift =
$$\frac{-C}{b}$$

(2)
$$y = 2 \sin(30 + 18^{\circ})$$

Amp = 2
period = $\frac{360}{5} = \frac{360}{3} = 120$
Phase shift = $\frac{-6}{5} = -\frac{18}{3} = -6$
 $1eft = \frac{7}{6}$

y= 8 sin (20 - 10) Amp=8 Period = 360 = 360 = 180 $P.S. = \frac{-C}{b} = \frac{10}{a} = 5(i_{10}ht)$

$$y = 2 \cos(30 - 60)$$

amplitude = Q $period = \frac{360}{b} = \frac{360}{3} = 120$ $phase shift = \frac{-60}{3} = 20$ (right)

$$anplitude = 10$$

$$per:J = 180^{i}$$

$$phare shift = 10$$

$$y = 10 \quad sin(20 - 20)$$

$$per:J = \frac{360}{5} \quad p.s. = \frac{-c}{5}$$

$$\frac{180^{i}}{5} = \frac{360}{5} \quad \frac{10}{1} = \frac{-c}{2}$$

$$b = 2 \quad -c = 20$$

$$c = -20$$

Amp = 800
period = 90
phose shift = -8

$$y = 800 \sin(40 + 32)$$

period = $\frac{360}{b}$ P.S. = $\frac{-C}{b}$
90 = $\frac{360}{1 = 10}$ P.S. = $\frac{-C}{b}$
 $40 = \frac{-8}{1 = 4}$
 $b = 4$ $-C = -32$
 $C = 32$

anp= 2
period= 720
phere shift= 8°

$$y=2 \sin(\frac{1}{2}0 - 4)$$

period= $\frac{360}{b}$ p.s.= $\frac{-C}{b}$
 $\frac{720}{1} = \frac{360}{b}$ $\frac{8}{1} = \frac{-C}{1/2}$
720b= 360 $-c=4$
 $b= \frac{1}{2}$ $c=-4$

$$a = 6$$

$$pei = 1440$$

$$phase = 54 ft = -4$$

$$V = 6 \sin(40 + 1)$$

$$pei = \frac{360}{6}$$

$$P.s. = \frac{-6}{6}$$

$$\frac{1440}{1} = \frac{360}{6}$$

$$-\frac{4}{1} = \frac{-6}{141}$$

$$\frac{1440}{140} = \frac{360}{1440}$$

$$-C = -1$$

$$b = \frac{14}{4}$$

$$C = 1$$