$$
10-3 \text { Sol } \begin{aligned}
& 4-3-14 \\
& 5^{\text {ch }} 6 e 0
\end{aligned}
$$

(13) Cone

$$
\begin{aligned}
& \text { slant }=10 \\
& \text { latec-lacea }=60 \pi \\
& L_{1} A=\pi r \cdot \operatorname{siant} \\
& \frac{60 \pi}{10 \pi}=\frac{\pi \cdot r \cdot 1 \varnothing}{\pi} \\
& 6=r
\end{aligned}
$$

Sphere's $V=$?

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \cdot 6^{3} \\
& =288 \pi
\end{aligned}
$$

(12) Sphast:CBull

Sponge Ball
sphere

$$
\begin{aligned}
S . A & =196 \pi \\
5 . A & =4 \pi r^{2} \\
\frac{196 \pi}{4 \pi} & =\frac{4 \pi r^{2}}{4 \pi} \\
49 & =r^{2} \\
7 & =r
\end{aligned}
$$

$$
S_{0} A=4 \pi r^{2}
$$

$$
=4 \pi \cdot 14^{2}
$$

$$
=784 \pi
$$

(8)

New practice
Find area

Whole - hole

$$
\begin{gathered}
\pi r^{2}-\pi r^{2} \\
\pi \cdot 7^{2}-\pi \cdot 5^{2} \\
49 \pi-25 \pi \\
24 \pi
\end{gathered}
$$

A basketball has a surface area of 16π. what is its radius?

$$
\begin{aligned}
& \text { sphere } \\
& \text { s.A. }=4 \pi r^{2} \\
& i 6 \pi=\frac{4 \pi}{4 \pi} r^{2} \\
& \frac{16 \pi}{4 \pi} \\
& \sqrt{4}=\sqrt{r^{2}} \\
& 2=r
\end{aligned}
$$

$$
4-3-14
$$

$$
6^{\text {th }} 6<0
$$

10-3 SOL Questions
(8)

$$
\begin{aligned}
v= & \pi r^{2} \cdot h \\
= & \pi \cdot 8^{2} \cdot 56 \\
= & \pi 6456 \\
& 3584 \pi
\end{aligned}
$$

(13) Cone

$$
\begin{aligned}
& \text { slant }=10 \\
& \text { L.A. }=60 \pi
\end{aligned}
$$

Sphere

$$
L \cdot A=\operatorname{slan} t \cdot \pi \cdot r
$$

$$
\frac{60 \pi}{10 \pi}=\frac{10 \pi+r}{10 \pi}
$$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \cdot 6^{3} \\
& =288 \pi
\end{aligned}
$$

$$
6=r
$$

(4)

$$
\begin{aligned}
& V=2400 \\
& \frac{4}{5} \cdot 2400=1920 \mathrm{in}^{3}
\end{aligned}
$$

(12)

$$
\begin{aligned}
& \begin{array}{l}
\text { Plast:c bull } \\
\text { S.A. }=4 \pi r^{2}
\end{array} \frac{\text { Spunge } B_{111}}{\text { S. } A=4 \pi r^{2}} \\
& 4 \quad \text { S.A }=4 . \pi \cdot 14 \\
& \frac{196 \pi}{4 \pi}=\frac{4 \pi r}{4 \pi} \\
& S . A=78^{4} \pi \\
& \sqrt{49}=\sqrt{r^{2}} \\
& r=7<\substack{\operatorname{sine}^{e} \\
i t^{2}} \\
& \text { is } \\
& \text { duubled }
\end{aligned}
$$

New practice

whole -hole

$$
\begin{gathered}
\pi r^{2}-\pi r^{2} \\
\pi \cdot 6^{2}-\pi \cdot 5^{2} \\
36 \pi-25 \pi \\
11 \pi(34.6)
\end{gathered}
$$

The surface area of a basketball is 36π. what is its volume?

$$
\begin{gathered}
S . A=-4 \pi r^{2} \\
\frac{36 \pi r}{4 \pi}=\frac{4 \pi r^{2}}{4 \pi} \\
9=r^{2} \\
r=3
\end{gathered}
$$

$$
v=\frac{41}{3} \pi r^{3}
$$

$$
=\frac{4}{3} \pi 3^{3}
$$

$$
=36 \pi
$$

