$$
\begin{gathered}
4-1-1^{16} \\
3^{1+} \operatorname{Tr}: g
\end{gathered}
$$

9-1
(19) Change 3 radians to degrees.


$$
\text { 3. } \frac{180^{\circ}}{\pi}=\frac{540}{\pi} \approx 172^{\circ}
$$



Radians


In which quadrant are these
(1) $\frac{\pi}{3}=\frac{1}{3} \pi$ I
(2) $\frac{2 \pi}{5}=\frac{2}{5} \pi$ I
(3) $-\frac{2 \pi}{3}=-\frac{2}{3} \pi \pi$
(4) $\frac{7 \pi}{4} 10$
(5) $\frac{-3 \pi}{4} \pi 1$
(6) $\frac{9 \pi}{4}\left(2 \frac{1}{2}, \pi\right) \square$

Coterminal Angles
Line is pointins in same dircct:on
will differ by a mutiple of $360^{\circ}$.

Give me a cotermind angle to
(1) $20^{\circ}-340^{\circ} \quad 380^{\circ}$
(2) $100^{\circ}-260^{\circ} \quad 460^{\circ}$

(3) $600^{\circ}$ Subtrect $360^{\circ}$ twice $-120^{\circ}$

Reference Angles always give angle between given angle and $x$-a $x$ is.
(1) What is the reference angle to. $200^{\circ}$ ? $20^{\circ}$

(2) What is referenseansle of $-80^{\circ}$ ?

(3) Reference angle to

$$
250^{\circ}
$$



$$
4-1-14
$$

9-1

$$
4^{t \sim} \text { Tris }
$$

(19) What is 3 radions indegrers?


$$
3 \cdot \frac{180^{\circ}}{\pi}=\frac{540}{\pi} \approx 172^{\circ}
$$




In which quadraet is each of
these
(1) $\pi / 3$ I
(2) $\frac{2 \pi}{3}$ II
(3) $-\frac{4 \pi}{5}$ II
(4) $\frac{7 \pi}{3} \quad 2 \frac{1}{3} \pi I$

Coterminal Angles
Angles pointing in
same direction
Differ by a multiple
of $360^{\circ}$

- Give a nsle that is coterminl to.
(1) $40^{\circ} 400^{\circ}$ or $-320^{\circ}$
(2) $700^{\circ} \quad \begin{aligned} & 1060^{\circ} \\ & 340^{\circ}\end{aligned}$ or $-20^{\circ}$
(3) $\pi \quad 3 \pi \quad-\pi$
(4) $\frac{\pi}{4}+2 \pi=\frac{9 \pi}{4} \quad \frac{-7 \pi}{4}$

$$
\frac{8}{4}
$$

(5) $\frac{2 \pi}{3}+2 \pi \quad \frac{8 \pi}{3} \quad \frac{-4 \pi}{3}$
(6) $\frac{1 \pi}{9}+2 \pi \frac{19 \pi}{9} \quad \frac{-17 \pi}{9}$
$-\frac{18}{9}$

