$$
\begin{gathered}
2-27-14 \\
3^{r<} T r i g
\end{gathered}
$$

Area
Heron's furmula

$$
=\frac{1}{2}(a+b+c)
$$

Sem: perimeter
callits

$$
A=\sqrt{S \cdot(s-a) \cdot(s-b)(s-c)}
$$

Example

$$
\begin{aligned}
& 4 . \quad \begin{array}{l}
S=\frac{1}{2} \text { of pecimetar } \\
S=11
\end{array} \\
& A=\sqrt{11 \cdot(11-4)(11-8)(11-10)} \\
& \sqrt{11 \cdot 7 \cdot 3 \cdot 1} \\
& \sqrt{231} \approx 15.2 \mathrm{~cm}^{2}
\end{aligned}
$$

$\frac{\sin \theta}{1}=\frac{h}{a}$
(h) $=a \cdot \sin \theta$

$$
A=\frac{1}{2} \cdot a \cdot b \cdot \sin \theta
$$

$$
\approx 23.0 \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
A & =\sqrt{S \cdot(s-a)(s-b)(s-c)} \\
& =\sqrt{3.5 \cdot(3.5-2)(3.5 \cdot 2)(3.5-3)} \\
& \approx 3.9 \\
& \approx 2.0 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \cdot 10 \cdot 12 \cdot \sin 80^{\circ} \\
& \approx 59.1 \mathrm{~cm}^{2}
\end{aligned}
$$

$8-4$
(19) How many ordered pairs of integers (x, y) are Solutions to $x^{2}+y^{2}<9$?

$$
\begin{array}{llll}
(0,0) & 1 & (\pm 1, \pm 2) & 4 \\
(0, \pm 1) 2 & (\pm 2,0) & 2 \\
(0, \pm 2) 2 & (\pm 2, \pm 1) & 4 \\
(\pm 1,0) 2 & (\pm 2, \pm 2) & 4
\end{array}
$$

$$
\begin{aligned}
& 2-27-14 \\
& 4^{+n} \text { Tr. }
\end{aligned}
$$

Heron's Formula

$$
A=\sqrt{9 \cdot(9.8)(9.4)(9.6)}
$$

$$
=\sqrt{9 \cdot 1 \cdot 5 \cdot 3}
$$

$$
\approx 11.6 \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
& 4 \quad \begin{array}{l}
p=14 \\
s=7
\end{array} \\
& A=\sqrt{7 .(7-4)(7.4)(7-6)} \\
& =\sqrt{7.3 .3 .1} \\
& =\sqrt{63} \\
& \approx 7.9 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot b a^{\downarrow} \cdot \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin \theta}{1}=\frac{h}{a} \\
& h=a \cdot \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \cdot 6 \cdot 10 \cdot \sin 52 \\
& \approx 23.6 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \cdot 6 \cdot 10 \cdot \sin 42^{\circ} \\
& \approx 20.1 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
S=4.5
$$

$$
\begin{aligned}
A & =\sqrt{4.5 \cdot .5 \cdot 2.5 \cdot 1.5} \\
& \approx 2.9 \mathrm{~cm}^{2}
\end{aligned}
$$

8-4 (19)
How many ordered pairs of

$$
\begin{aligned}
& \text { integers }(x, y) \text { satisfy } \\
& x^{2}+y^{2}<9 ? \\
& (0,0) 1 \\
& (0, \pm 1) 2 \\
& (0, \pm 2) 2 \\
& (\pm 1,0) 2 \\
& (\pm 1, \pm 1) 4
\end{aligned}
$$

