Multiply a digit through the mat., x

$$
5\left[\begin{array}{ccc}
1 & 2 & 6 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & 10 & 30 \\
5 & -5 & 0
\end{array}\right]
$$

$$
\left\{\begin{aligned}
2 x+3 y+5 z & =6 \\
x+y+z & =10 \\
-3 x-y-2 z & =-1
\end{aligned}\right.
$$

$$
\left[\begin{array}{rrr}
2 & 3 & 5 \\
1 & 1 & 1 \\
-3 & -1 & -2
\end{array}\right]
$$

$1^{\text {st }}$ Row $\cdot 1^{\text {st }}$ Colum

$$
\left[\begin{array}{ll}
2+9 & 4+21 \\
4+3 & 8+7
\end{array}\right]=\left[\begin{array}{ll}
11 & 25 \\
7 & 15
\end{array}\right]
$$

$$
\begin{aligned}
& \text { 12-6-13 } \\
& 3^{\text {re }} \text { Trig } \\
& {\left[\begin{array}{ccc}
2 & 1 & 3 \\
5 & 6 & -2
\end{array}\right] \frac{2 \times 3}{0 r}} \\
& \begin{array}{ll}
R C & C O \\
0 & 0 \\
\omega & i \\
s & m \\
& n \\
3
\end{array} \\
& \text { Easy to } A d d \\
& {\left[\begin{array}{ll}
2 & 4 \\
6 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
4 & 10
\end{array}\right]=\left[\begin{array}{cc}
3 & 5 \\
10 & 11
\end{array}\right]}
\end{aligned}
$$

$\left[\begin{array}{ll}-1+0 & -2+9 \\ -2+0 & -4+15\end{array}\right]=\left[\begin{array}{ll}-1 & 7 \\ -2 & 11\end{array}\right]$

$\left[\begin{array}{ll}0+10 & 0+12 \\ 9+5 & 12+6\end{array}\right]=\left[\begin{array}{cc}10 & 12 \\ 19 & 18\end{array}\right]$

Tell if the matrices can
be multiplied and if so,
what siza is male ix answer.
$A=3 \times 5 \quad D=2 \times 5$
$B=2 \times 3 \quad E=3 \times 3$
$C=5 \times 2 \quad F=3 \times 2$
(1) A.C $3 \times 5.5 \times 2 \times 2$
(2) $D \cdot F \quad 2 \times 53 \times 2 x$
(3) FOD $3 \times 2 \times 5 \quad 3 \times 5$
(4) $C \cdot B \quad 5 \times 2 \times 3 \sqrt{2} 5 \times 3$
(5) $F \cdot E \quad 3 \times 3 \times 3 x$
$\left[\begin{array}{lll}2 & 4 & 1\end{array}\right]$
$1 \times 3$$\quad\left[\begin{array}{l}2 \\ 0 \\ 5\end{array}\right]$
$4+0+5$
[9]
$\left[\begin{array}{l}2 \\ 0 \\ 5\end{array}\right] \cdot\left[\begin{array}{lll}2 & 4 & 1\end{array}\right]$
$3 \times 11 \times 3$

$$
\left\lceil\begin{array}{lll}
4 & 8 & 2 \\
0 & 0 & 0
\end{array}\right\rceil
$$

$$
\begin{aligned}
& \text { 12-6-13 } \\
& 4^{\text {ln }} \text { Trig }
\end{aligned}
$$

Matrices

$$
\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 6 & 2
\end{array}\right] \frac{2 \times 3}{0 r} \begin{aligned}
& 2 \times 2
\end{aligned}
$$

$R C$
o
w
i
m
s
Adding

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
5 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
9 & 5
\end{array}\right]
$$

multiply by single number

$$
3\left[\begin{array}{ccc}
2 & 1 & 5 \\
0 & -1 & -8
\end{array}\right]=\left[\begin{array}{ccc}
6 & 3 & 15 \\
0 & -3 & -24
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
10+18 & 2+6 \\
5+-6 & 1+-2
\end{array}\right]=\left[\begin{array}{cc}
28 & 8 \\
-1 & -1
\end{array}\right]
$$

(8) Pe

$$
\left[\begin{array}{ll}
6+1 & 4+1 \\
15+6 & 10+6
\end{array}\right]=\left[\begin{array}{cc}
7 & 5 \\
21 & 16
\end{array}\right]
$$

$$
\left[\frac{2}{2} 33\right] \cdot\left[\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ll}
6+3 & 2+12 \\
15+0 & 5+0
\end{array}\right]=\left[\begin{array}{ll}
9 & 14 \\
15 & 5
\end{array}\right]} \\
{\left[\begin{array}{lll}
3 & 2 & 1 \\
5 & 4 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right]} \\
2 \times\left[\begin{array}{lll}
3 & 2 \\
\text { Mustmatch }
\end{array}\right.
\end{gathered}
$$

Tell if the matrices can be multiplied and if so, what sizz is mate ix answer.

$$
\begin{array}{ll}
A=3 \times 5 & D=2 \times 5 \\
B=2 \times 3 & E=3 \times 3 \\
C=5 \times 2 & F=3 \times 2
\end{array}
$$

(1) $\mathrm{A} \cdot \mathrm{E} 3 \times 5 \cdot 3 \times 3 \mathrm{No}$
(2) $B \cdot E 2 \times 3 \cdot 3 \times 3 \quad 2 \times 3$
(3) $C \cdot D \quad 5 \times 2 \cdot 2 \times 5 \quad 5 \times 5$
(4) $D . C \quad 2 \times 5.5 \times 2 \quad 2 \times 2$
(5) F.F $3 \times 2.3 \times 2 \mathrm{NO}$

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \times 3
\end{array}\right]} \\
0 \times 1 \\
0+6+0 \\
{[8]}
\end{array}\right] \begin{aligned}
& 3 \times 1 \\
& {\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \cdot\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]} \\
& 3 \times 1 \begin{array}{lll}
1 \times 3
\end{array} \\
& {\left[\begin{array}{lll}
2 & 3 & 4 \\
4 & 6 & 8 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

