$$
\begin{aligned}
& 12-5-13 \\
& 3^{\text {rd }} \text { Tig } \\
& \text { Systems of Equations } \\
& \text { (1) }\left\{\begin{array}{l}
2 x+y=7 \\
y=x+1
\end{array}\right. \\
& 2 x+x+1=7 \\
& \begin{array}{r}
3 x+1=7 \\
-1=-1 \\
\hline 3 x=6
\end{array} \\
& x=2 \quad \therefore y=2+1 \\
& y=3 \\
& (2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) }\left\{\begin{array}{l}
y=3 x-1 \\
y=2 x+5
\end{array}\right. \\
& \begin{aligned}
3 x-1 & =2 x+5 \\
x & =6 \quad \therefore y=3(6)-1 \\
y & =17
\end{aligned}
\end{aligned}
$$

(3)

$$
\left\{\begin{array} { l }
{ y = \frac { 2 x - 1 } { \downarrow } = - 1 } \\
{ x - y = - 1 }
\end{array} \left\{\begin{array}{ll}
x-(2 x-1)=-1 \\
x-2 x+1=-1 \\
-x+1=-1 \\
-1-1 \\
-x=-2 & \\
\therefore x=2 & y=2(2)-1 \\
& y=3
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \text { Elimination } \\
& 2+4=6 \\
& \begin{aligned}
&+\quad 1+5=6 \\
& \hline 3+9=12 \text { New equation is time }
\end{aligned} \\
& \left\{\begin{aligned}
& 2 x-y=7 \\
& x+y=5 \\
& 3 x=12 \\
& x=4 \quad 4+y=5 \\
& y=1
\end{aligned}\right. \\
& \left\{\begin{aligned}
& 2 x+3 y=8 \Rightarrow 2 x+3 y=8 \\
& 5 x-y=3 \xrightarrow{m} 15 x-3 y=9 \\
& \hline 17 x=17 \\
& x=1
\end{aligned}\right. \\
& 2(1)+3 y-8 \\
& 2+3 y=8 \\
& \begin{aligned}
3 y & =6 \\
y & =2
\end{aligned} \\
& \left\{\begin{array}{l}
2 x+7 y=1 \stackrel{m 3}{\Rightarrow} 6 x+21 y=3 \\
3 x+5 y=7 \stackrel{m 2}{\Rightarrow}-6 x-10 y=-14 \\
11 y=-11
\end{array}\right. \\
& y=-1 \\
& 2 x+7(-1)=1 \\
& 2 x-7-1 \\
& \begin{aligned}
2 x & =8 \\
x & =4
\end{aligned} \\
& \left\{\begin{array}{l}
2 x+y=4 \stackrel{m-z}{\Rightarrow}-4 x-2 y=-8 \\
4 x+2 y=5 \Rightarrow \frac{4 x+2 y=5}{0+0=-3}
\end{array}\right. \\
& 0=-3 \text { False } \\
& \therefore \text { no solution } \\
& \text { because lines ware } \\
& \text { parallel. } \\
& \text { If we get a five statement } \\
& \text { like } 0=0 \text { or } 5=5, e \text { te., } \\
& \text { then the lines are on top } \\
& \text { of one another (coincident lines. } \\
& \left\{\begin{array}{l}
y=2 x+3 \\
2 y=4 x+6
\end{array}\right. \\
& \text { Infinite \# } \\
& \text { of solutions }
\end{aligned}
$$

At Denny's Begs and 2 pieces of toast cost $\$ 4$ 4 eggs and 4 pieces of toast cost \$6. How much are you paying for each es and each piece of toast?

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 e+2 \cdot t=4 \Rightarrow \\
4 e+4 t=6
\end{array}\right. \\
& \frac{-6 e-4 t=-8}{3 e+4 t=6} \\
& \frac{-2 e=-2}{e=1} \quad \begin{array}{l}
4(1)+4 t=6 \\
t=50
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 12-5-13 \\
& 4^{2-} T r i 9
\end{aligned}
$$

Systems of Equations

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=\frac{2 x+1}{4} \\
3 x+y=11
\end{array}\right. \\
& \begin{array}{c}
3 x+\frac{y}{2 x+1}=11 \\
5 x+1=11
\end{array} \\
& x=2 \quad y=2(2)+1=5 \\
& (2,5) \\
& \left\{\begin{array}{l}
2 x+2 y=8 \\
y=x-4
\end{array}\right. \\
& 2 x+2(x-4)=8 \\
& 2 x+2 x-8=8 \\
& x=4 \therefore y=4-4=0
\end{aligned}
$$

$$
\left\{\begin{array}{c}
x=y+3 \\
2 y-x=-2 \\
2 y-(y+3)=-2 \\
2 y-y-3=-2 \\
y-3=-2 \\
y=1+3=1+4
\end{array}\right.
$$

Elimination

$$
\begin{aligned}
& \begin{aligned}
2+1 & =3 \\
+\quad 4+3 & =7 \\
\hline 6+4 & =10 \text { 3" is true, too }
\end{aligned} \\
& +\left\{\begin{array}{l}
3 x-y=5 \\
4 x+y=9
\end{array}\right. \\
& x=2 \quad 4(2)+y=9 \\
& y=1
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x+y=7 \stackrel{m_{2}}{\Rightarrow} 6 x+2 y=14 \\
5 x-2 y=8 \Rightarrow 5 x-2 y=8 \\
\hline 11 x=22
\end{array}\right. \\
& x=2 \\
& 3(2)+y=7 \\
& y=1 \\
& \left\{\begin{array}{l}
5 x+2 y=9 \stackrel{m}{\Rightarrow}-15 x-6 y=-27 \\
6 x+3 y=12 \stackrel{m 2}{\Rightarrow} \frac{12 x+6 y=24}{-3 x=-3}
\end{array}\right. \\
& 5(1)+2 y=9 \\
& x=1 \\
& y=2 \\
& \left\{\begin{array}{l}
y=x+3 \\
2 x-2 y=-6
\end{array}\right. \\
& 2 x-2(x+3)=-6 \\
& 2 x-2 x-6=-6 \\
& -6=-6 \\
& \text { True stationnt, so lines } \\
& \text { are on top of one another } \\
& \text { (coincident lines). Infinite } \\
& \text { number of solutions since } \\
& \text { infinite of intersections. }
\end{aligned}
$$

If false stotinnat like $7=0$, then lines are parallel and there are no solutions (no intersections)

At Waffle House 2 eggs and 3 pieces of toast cost $\$ 3$? 3 eygs and 3 pieces of toast cost $\$ 4.50$. How much are you paying for eggs and each piece of toast?

$$
\left\{\begin{array}{l}
-2 \cdot e+-3 t=3.50 \\
3 e+3 t=4.50
\end{array}\right\}
$$

