$$
\begin{aligned}
& \text { 12-16.13 } \\
& 5^{\text {ta }} \text { Geo } \\
& \text { If the radius of } a \\
& \text { circle is } 20 \mathrm{~cm} \text {, what } \\
& \text { is the circumference? } \\
& c=\pi \cdot d \\
& c=\pi \cdot 40 \\
& C=40 \pi \\
& \text { If the perimeter of } \\
& \text { a square is } 40 \text {, what is } \\
& \text { its area? } \\
& 100 \mathrm{~cm} 10 \\
& \text { Give the equation that } \\
& \text { is } 1 \text { to } y=\frac{1}{2} x+3 \text { and } \\
& \text { goes through }(2,7) \\
& y-y_{1}=m\left(x-x_{1}\right) \quad+m=-2 \\
& y-7=-2(x-2) \\
& \begin{array}{c}
y-7=-2 x+4 \\
y+1 \\
y=-2 x+11
\end{array} \\
& V \rightarrow \text { or } \\
& \Lambda \rightarrow \text { and } \\
& A B C D \text { is a parallelogram. } \\
& A=(2,5) \quad B=(10,5) \\
& \underset{A(0,5)}{ }=(9,8) \text {. Find } D \text {. }(0,8) \\
& \text { Give equation } 1 \text { to } \\
& y=-2 x+1 \\
& y=\frac{1}{2} x+\square \\
& \text { Linear pair } \\
& \text { Vertiol < 's } \\
& \text { In } \triangle C W H, \angle H=\angle C
\end{aligned}
$$

Give slope from $(1,1)$
to $(-1,17)$.

$$
\begin{gathered}
S \text { lope }=\frac{\Delta y}{\Delta x}=\frac{17-7}{-1-1}=\frac{10}{-2}=-5 \\
A=(2,3) \text { Find distance } \\
B=(3,7) \text { from } A \text { to } B \\
C=(1,0) \text { then to } C . \\
A=(6,3) \quad B) \\
\begin{array}{c}
\frac{\left(1^{2}+4^{2}\right.}{\sqrt{17}} \quad \sqrt{2^{2}+7^{2}} \\
\sqrt{53} \\
\sqrt{17}+\sqrt{53} \approx 11.4<(1,0)
\end{array}
\end{gathered}
$$

what mut be true to prove $\triangle L M N \cong \triangle O P N$ by $A S A \angle L=\angle 0 \quad A A S=\angle P=\angle N)$

$$
\begin{gathered}
12-16-13 \\
6^{20} 6 e 0
\end{gathered}
$$

$A B C D$ is a parallelogram
with $A=(-3,5) \quad B=(7,5)$
$C=(9,10)$. where is D ?

In $\triangle A B C, A B=B C$
which angles muse be equal?

$$
\begin{aligned}
& \text { Give the equation that } \\
& \text { goes through }(2.4) \text { and } \\
& \text { is } \perp \text { to } y=(-2 x+1 \\
& m=-2 \\
& \perp m=\frac{1}{2} \\
& y-y=m\left(x-x_{1}\right) \\
& y-4=\frac{1}{2}(x-2) \\
& y-4=\frac{1}{2} x-1 \\
& +4+4 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

Which is a possible isosceles
ta.) $2,250^{0} 4$

(d.) all are isosceles

Find the slope between

$$
\begin{aligned}
& (-1,2) \text { and }(1,12) . \\
& \text { Slope }=\frac{\Delta r}{\Delta x}=\frac{12.2}{1--1}=\frac{10}{2}=5
\end{aligned}
$$

In isosceles trapezoid
$A B C D, A B=C D . \angle B$
must be congruent to $\angle C$.

$$
\begin{gathered}
\text { If radius of a circle } \\
\text { is } 10 \mathrm{~cm} \text {, what is the } \\
\text { circumference? } \\
C=T \cdot d \\
20 T
\end{gathered}
$$

$$
\begin{aligned}
& \text { what is the area of a } \\
& \text { square whose perimeter } \\
& \text { is } 36 \mathrm{~cm} \text { ? } \frac{36}{4}=9 \\
& \frac{9}{91 \mathrm{~cm}^{2}} 9 \\
& \overrightarrow{B X} \text { bisects } \angle A B C \text {. } \\
& \text { If } \angle A B C=40^{\circ}, \text { whet is } \angle A B X
\end{aligned}
$$

$$
A=(1,2) \quad B=(3,5)
$$

$$
c=(4,10) \text {. }
$$

$$
\text { If } I \text { drive from town }
$$

$$
A \text { to } B \text { and then to }
$$

$$
\begin{aligned}
& \text { A to C, how far have } \\
& \text { town } C \text {, }
\end{aligned}
$$

I traveled?

$$
\begin{array}{cc}
(1,2) & B=(3.5) \\
\sqrt{2^{2}+32} \\
\sqrt{13+52^{2}} \\
\sqrt{26}
\end{array}(4,0)
$$

$$
\begin{gathered}
\sqrt{13}+\sqrt{26} \\
4 \\
3 . \\
=8.7
\end{gathered}
$$

