$12-13-13$
$3^{\text {nd }}$ Trig
(75) $\left\{\begin{aligned} & 5 x-2 y=2 \stackrel{m 3}{\Rightarrow} \quad 15 x-6 y=6 \\ & 3 x-3 y=-15 \stackrel{m-5}{\Rightarrow}-15 x+15 y=75 \\ & 9 y=81 \\ & y=9\end{aligned}\right.$
(62) \perp to $y=\underset{m=-2}{-2 x+4} \quad(4,1)$

$$
\begin{aligned}
& m=-2 \\
& \therefore \perp m=\frac{1}{2}
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-1=\frac{1}{2}(x-4)
$$

$$
y-1=\frac{1}{2} x-2
$$

$$
y=\frac{1}{2} x-1
$$

(87) $2<x \leq 5$ $\frac{2}{5+. .5}, \frac{5}{8 n}$
(86) $x \leq 3$

$$
\begin{aligned}
& \text { (20) } \perp \text { to } \begin{array}{l}
5 x-4 y=2 \\
\frac{-5 x-4 y=\frac{-5 x}{-4}+2}{-4} \\
\frac{-4}{-4}
\end{array} \\
& y=\frac{5}{4} x-\frac{1}{2} \\
& \therefore \perp m=-\frac{4}{5} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{aligned}
y-7 & =-\frac{4}{5}(x-6) \\
5[y-7 & \left.=\frac{-4}{5} x+\frac{24}{5}\right]
\end{aligned} \\
& \begin{array}{l}
5 y-35=-4 x+24 \\
+35+35 \\
\hline 5 y=-4 x+59 \\
+4 x+4 x \\
4 x+5 y=59
\end{array}
\end{aligned}
$$

(20) $[(x-1)(x+1)[(x+3)(x-3)]$

$$
\begin{aligned}
& \left(x^{2}-1\right)\left(x^{2}-9\right) \\
& x^{4}-10 x^{2}+9
\end{aligned}
$$

(157) $\frac{2}{1} \frac{2}{2} \frac{2}{3} \frac{2}{4} \frac{2}{5}$

$$
\frac{3}{6} \frac{3}{7} \frac{3}{8} \frac{3}{9} \frac{3}{10}=
$$

$$
7,776
$$

(152) $n - 2 \longdiv { n + 5 + \frac { 9 } { n - 2 } }$

$$
\begin{aligned}
& -n^{2}-2 n \\
& \frac{5 n-1}{5 n-10}+9
\end{aligned}
$$

(132) parnllol to $12 x+2 y=8(-1,2)$

$$
\begin{aligned}
& \frac{-12 x}{\frac{2 y}{2}=\frac{-12 x}{2}+\frac{8}{2}} \\
& y=\frac{-6 x+4}{} \\
& y-y_{1}=m\left(x-x_{1}\right) \quad m=-6 / / \\
& y-2=-6(x+1) \\
& y-2=-6 x-6 \\
& \frac{y=-6 x-4}{y=-6 x+6 x} \\
& \frac{y x+y=-4}{}
\end{aligned}
$$

(14) inverse of $f(x)=x^{2}-5$
$\begin{array}{ll}\text { (1) } y=x^{2}-5 & \sqrt{y^{2}}=\sqrt{100} \\ \text { (2) } x=y^{2}-5 & \end{array}$
(3) $+\sqrt{x+5}=\sqrt{y^{2}} \quad y= \pm 10$

$$
\pm \sqrt{x+5}=f^{-1}(x)
$$

$12-13-13$
$4^{14} T_{r i g}$
(50) dumain of $f(x)=\frac{x^{3}+4 x-1}{\sqrt{x}}$
$\sqrt{x} \quad x=0 \quad x>0$
$x \in c$ cait be 0
(116) \perp to $2 x-4 y=10$

$$
\begin{aligned}
& \frac{-2 x}{\frac{-4 y}{-4}}=\frac{-2 x}{-4}+\frac{10}{-4} \\
& y=\frac{1}{2} x-2 \frac{1}{2} \\
& 1 m=-2
\end{aligned}
$$

(114) inverse of $f(x)=x^{2}-5$
$\begin{array}{rlrl}\text { (1) } y=x^{2}-5 & \\ x & =y^{2}-5 & \sqrt{y^{2}}=\sqrt{16} \\ \text { (2) }+5 \\ \sqrt{x+5} & =\sqrt{y^{2}} & y=-4 \\ \pm \sqrt{x+5}=y & \end{array}$
(107) $\frac{26}{L} \frac{26}{L} \frac{26}{L} \frac{10}{D} \frac{10}{P} \frac{10}{D}$
$17,576,000$
(130) \perp to $y=-4 x-5 \quad(-8,2)$
$m=-4$
$\perp m=\frac{1}{4}$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-2=\frac{1}{4}(x+8)$
$y-2=\frac{1}{4} x+2$
+2
$4\left[y=\frac{1}{4} x+4\right]$
$4 y=x+16$
$-1[-x+4 y=16]$
$x-4 y=-16$
(13)

$$
\begin{aligned}
& \text { (13) }\left\{\begin{array}{l}
2 x+3 y=8 \Rightarrow \begin{array}{l}
-4 x-6 y=-16 \\
4 x+2 y=12 \Rightarrow 4 x+2 y=12 \\
-4 y=-4
\end{array} \\
\text { (153) }\left(2 a^{-3}\right)^{-2} \quad y=1 \\
\left(\frac{2}{a^{3}}\right)^{-1 \cdot 2} \\
\left(\frac{a^{3}}{2}\right)^{2}=\frac{a^{3}}{2} \cdot \frac{a^{3}}{2}=\frac{a^{6}}{4}
\end{array}\right.
\end{aligned}
$$

(157) $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

$$
\frac{3 \cdot 3}{7,776} 3
$$

(143) $20 n(r 3=1140$
(145)

$$
\begin{array}{r}
n - 5 \longdiv { n + 6 + \frac { 2 9 } { n - 5 } } \begin{array} { r }
{ n ^ { 2 } + n - 1 } \\
{ - n ^ { 2 } - 5 n } \\
{ 6 n - 1 } \\
{ - 6 n - 3 0 } \\
{ 2 9 }
\end{array}
\end{array}
$$

(80) $D E$

$$
\begin{aligned}
& \text { (80) DE } \\
& {\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]} \\
& 3 \times 1 \underbrace{\times 3}_{\text {final size of a. }} 3 \times i \\
& 6+12+2 \\
& {[20]}
\end{aligned}
$$

(81) $\underset{1 \times 1}{ } E=E=\underset{3 \times 3}{D}$

(a4)

$$
\begin{aligned}
& A: 4 \times 5 \\
& B: 3 \times 3 \\
& C: 4 \times 5 \\
& A+C=4 \times 5+4 \times 5 \\
& 4 \times 5
\end{aligned}
$$

