$$
\begin{gathered}
11-5-13 \\
3^{\prime \prime} T_{r i y}
\end{gathered}
$$

Slope
FIRE

Rise with the wise (y)
Run to the exit (x)

$$
\text { Slope }=\frac{\Delta y}{\Delta x}
$$

F ind slope between $(1,4)$ and $(3,4)$.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{14-4}{3-1}=\frac{10}{2}=5
$$

You find slope between

$$
\begin{aligned}
& (-2,-6) \text { and }(1,6) \\
& \text { Slope }=\frac{\Delta y}{\Delta x}=\frac{6--6}{1--2}=\frac{12}{3}=4
\end{aligned}
$$

Find the distances between

$$
\begin{gathered}
(1,4) \operatorname{and}(2,7) \\
D=\sqrt{\Delta x^{2}+8 y^{2}} \\
=\sqrt{1^{2}+3^{2}} \\
\sqrt{1+9} \\
\sqrt{10} \approx 3.2
\end{gathered}
$$

$\mu^{n}-1 n a \cdot n t$

$$
m \text { :dpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Find the midpoint of

$$
\begin{aligned}
& (2,8) \text { and }(4,18) \\
& \text { midpoint }=\left(\frac{2+4}{2}, \frac{8+18}{2}\right) \\
& (3,13)
\end{aligned}
$$

$$
\begin{aligned}
& 11-5-13 \\
& 4^{2 r} \operatorname{Tr}: y
\end{aligned}
$$

Slope \qquad FIRE

Rise win the wise (y)

$$
\text { Slope }=\frac{\Delta y}{\Delta x}
$$

Find the slope between $(2,3)$ ant $(4,13)$.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{13-3}{4-2}=\frac{10}{2}=5
$$

Find the slope between

$$
\begin{aligned}
& (-2,-6) \text { and }(2,6) . \\
& \text { slope }=\frac{\Delta y}{\Delta x}=\frac{6--6}{2--2}=\frac{12}{4}=3
\end{aligned}
$$

$$
\text { Dist.... }-\sqrt{\Delta x^{2}+\Delta y^{2}}
$$

Find the distance from

$$
\begin{aligned}
& (1,6) t_{0}(5,10) \\
& D=\sqrt{\Delta x^{2}+8 y^{2}} \\
& \sqrt{4^{2}+4^{2}} \\
& \sqrt{32} \\
& \approx 5.7
\end{aligned}
$$

Find the distance $=$ forum

$$
(-2,-1) \text { tu }(1,4)
$$

$$
D=\sqrt{\Delta x^{2}+\Delta y^{2}}
$$

$$
\begin{gathered}
=\sqrt{3^{2}+5^{2}} \\
\sqrt{34} \\
\approx 5.8
\end{gathered}
$$

$$
m: \text { dpoint }=\left(\frac{x_{1}-1 x_{2}}{2}, \frac{y_{i}+y_{2}}{2}\right)
$$

Find the midpoint
of $(1,6)$ and $(8,10)$

$$
\begin{aligned}
m: d p o: n \tau= & \left(\frac{1+8}{2}, \frac{6+10}{2}\right) \\
& \left(\frac{9}{2}, \frac{16}{2}\right) \\
& (4.5,8)
\end{aligned}
$$

