$$
\begin{aligned}
& \begin{array}{l}
11-14-13 \\
3^{2 d} T r i g
\end{array} \\
& \sum_{\text {Sigma }}^{\text {Summation }}
\end{aligned} \quad \begin{aligned}
& \sum_{n=5}^{n} 2 n+3=45 \\
& n=5 \quad 2.5+3=13 \\
& n=6 \quad 2.6+3=15 \\
& n=7 \quad 2.7+3=\frac{17}{45}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=-2}^{0} n^{2}=5 \\
n=-2 \quad(-2)^{2}=4 \\
n=-1 \quad(-1)^{2}=1 \\
n=0 \quad 0^{2}=\frac{0}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{3} 2^{n}=15 \\
& n=0 \quad 2^{0}=1 \\
& n=1 \quad 2^{1}=2 \\
& n=2 \quad 2^{2}=4 \\
& n=3 \quad 2^{3}=\frac{8}{15} \\
& \sum_{n=-2}^{-1} 2^{n}=\frac{3}{4} \\
& n=-2 \quad 2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \\
& n=-1 \quad 2^{-1}=\frac{\frac{1}{2}=\frac{1}{2}}{\frac{3}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
& \frac{100!}{99!}=\frac{100 \cdot 99.98 \cdot 97 \cdots \cdot\left(\frac{x)}{991 \cdot 98 \cdot 57 \cdot\left(\cdots \frac{2}{1} 1\right.}\right.}{100} \\
& \frac{10!}{8!}=\frac{10 \cdot 9 \cdot \% \cdot p \cdots p \cdot 1}{18 \cdot 6 \cdot \cdots 2 \cdot 1}=90 \\
& \frac{6!4!}{5!3!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot P \cdot 11 \quad 4 \cdot 3 \cdot R \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& 24 \\
& \frac{12!}{10!}=\frac{12 \cdot 11 \cdot 10!}{10!}=132 \\
& \frac{97!}{98!}=\frac{97 \cdot 96 \cdot 12 \cdot 1}{98 \cdot 97 \cdot 1 \cdot \cdot 2 \cdot 11}=\frac{1}{98}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11-14-13 } \\
& 4^{\text {th }} \text { Trig } \\
& \sum \text { sigma } \\
& \text { Summation } \\
& \sum_{n=1}^{3} 4 n-5=9 \\
& n=1 \quad 4 \cdot 1-5=-1 \\
& \begin{array}{ll}
n=2 & 4 \cdot 2 \cdot 5=3 \\
n=3 & 4 \cdot 3-5=7 \\
9
\end{array} \\
& \sum_{n=4}^{6} 2 n=30 \\
& n=4 \quad 2.4=8 \\
& n=5 \quad 2.5=10 \\
& n=6 \quad 2.6=\frac{12}{30}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{1} 2^{n} \\
& n=-1 \quad 2^{-1}=\frac{1}{2} \\
& n=0 \quad 2^{0}=1 \\
& n=1 \quad 2^{1}=\frac{2}{31 / 2} \\
& 4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
& 6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720 \\
& \frac{100!}{99!}=\frac{100 \cdot 94 \cdot 98 \cdot \cdots \cdot 2 \cdot y}{99 \cdot 98 \cdot \cdots \cdot 12 \cdot 1}=100 \\
& \frac{8!}{6!}=\frac{8 \cdot 7 \cdot 9 \cdot 5 \cdot 4 \cdot 4 \cdot 7 \cdot 4 \cdot 1}{6 \cdot 4 \cdot 4 \% 21} \\
& 56
\end{aligned}
$$

