$$
\begin{aligned}
& 11-12-13 \\
& 3^{16} T_{r i g}
\end{aligned}
$$

From 73 questions
(6)

$$
\begin{aligned}
& (x+2)(x+2)(x+2) \\
& (x+2)\left(x^{2}+4 x+4\right) \\
& x^{3}+4 x^{2}+4 x+2 x^{2}+8 x+8 \\
& x^{3}+6 x^{2}+12 x+8
\end{aligned}
$$

(50)

$$
\begin{gathered}
f(x)=\frac{x^{3}+4 x-1}{\sqrt{x}} \geq 0 \\
x \geq 0 \\
\text { since it is in } \\
\text { buttin of ficctiug } \\
\operatorname{can} \text { it be } 0 \text { ? } \\
\therefore x>0
\end{gathered}
$$

(16)

$$
\begin{array}{cc}
\frac{4 \pm \sqrt{-40}}{2} & \sqrt{-40} \\
\frac{\downarrow}{\frac{4}{2} \pm 2 i \sqrt{10}} & 2 i \sqrt{-x \cdot 2-2 \cdot 2 \cdot 5} \\
\frac{2: \sqrt{10}}{2} &
\end{array}
$$

$2 \pm i \sqrt{10}$
(20)

$$
\frac{(x+1)(x-1)(x+2)(x-2)}{\left(x^{2}-1\right)}\left(x^{2}-4\right)
$$

(29)

$$
\begin{array}{r}
n+5+\frac{9}{n-2} \\
n-2 \sqrt{n^{2}+3 n-1} \\
=\frac{n^{2}-2 n}{} \begin{array}{r}
5 n-1 \\
-5 n-10
\end{array}
\end{array}
$$

(66)

$$
\begin{aligned}
& n-5 \sqrt{n^{2}+20} \\
& n - 5 \longdiv { n + 5 + \frac { 4 5 } { n - 5 } } \\
&-n^{2}+0 n+20 \\
&-5 n \\
& \frac{5 n+20}{45}
\end{aligned}
$$

(63)

$$
\begin{aligned}
& f(x)=\sqrt{10-x} \\
& 10-x \geq 0 \\
& \frac{-10-10}{\frac{-1 x}{-1} \geq \frac{-10}{-1}} \\
& x \leq 10
\end{aligned}
$$

(65)

$$
\begin{aligned}
& (22)\left(3 n^{2} y^{4}\right)^{2}+n\left(n^{4}\right) y_{n}^{3} \cdot y^{5} \\
& 3 n_{m y x}^{2} y^{4} \cdot 3 n^{2} y^{4} \\
& n n y y n y x y \\
& \\
& 9 n^{4} y^{8}+n^{5} y^{8}
\end{aligned}
$$




Dumein: $-1 \leqslant x<3$
Range: $-4<y \leq 4$
(40)

$$
\begin{aligned}
& \left(n^{3}+2 n\right)+\left(n^{2}-2\right) \\
& \frac{n\left(n^{2}+2\right)+-1\left(n^{2}+2\right)}{\left(n^{2}+2\right)(n-1)}
\end{aligned}
$$

$$
\begin{aligned}
& 11-12-13 \\
& 4^{e n} T i g
\end{aligned}
$$

Questions fiun $2^{\text {ni }} 6$-week $R Q$


$$
\begin{aligned}
&\left(\frac{n^{2} a^{4}}{y^{2}}\right)^{2} \\
& \frac{n^{2} a^{4}}{y^{2}} \cdot \frac{n^{2} a^{4}}{y^{2}}=\frac{n n a a^{a n}}{y y} \cdot \frac{n n a \cos }{y y} \\
&=\frac{n^{4} a^{8}}{y^{4}}
\end{aligned}
$$

(64)

$$
\begin{aligned}
& n + 2 \longdiv { n + 3 + \frac { - 4 } { n + 2 } } \\
& \begin{array}{r}
-n^{2}+2 n \\
\hline 3 n+2 \\
-\quad 3 n+6 \\
\hline-4
\end{array}
\end{aligned}
$$

(66)

$$
\begin{gathered}
n - 5 \longdiv { n ^ { 2 } + 2 0 } \\
n - 5 \longdiv { n + 5 + \frac { 4 5 } { n - 5 } } \\
\frac{n^{2}+0 n+20}{n^{2}-5 n} \\
\frac{-5 n+20}{45}
\end{gathered}
$$


(55) Domain: $-1 \leq x<3$
(50) Range: $-4<y \leq 4$
(58) Solve $x^{3}+6 x^{2}+5 x=0$

$$
\begin{gathered}
x\left(x^{2}+6 x+5\right)=0 \\
\downarrow \\
x(x+1)(x+5) \quad \frac{5}{1,5} \\
x=0 \quad x=-1 \quad x=-5
\end{gathered}
$$

$50 f(x)=\frac{x^{3}+4 x-1}{\sqrt{x_{x}}}$

$$
\begin{aligned}
& x \geq 0 \\
& x \neq 0 \\
& x>0
\end{aligned}
$$


(2)

$$
\begin{array}{ll}
\frac{n^{2}+9 n-10}{n^{2}-3 n-4} & \frac{4}{-1+10} \\
\frac{(n+10)(n-1)}{(n-4)(n+1)} & \\
\hline 2,2 \\
\hline 1,-4 \\
\hline
\end{array}
$$

(63)

$$
\begin{aligned}
& 5 a^{2}+10 a^{3} \\
& 5 a^{2}(1+2 a) \\
& x<2 \quad(-\infty, 2) \\
& 2<x \leq 5 \quad(2,5] \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 c}
\end{aligned}
$$

