$$
\begin{aligned}
& 10-29-13 \\
& 3^{14} 7 \cdot y
\end{aligned}
$$

(1) $(3,5)(3,7)$ Nota function
(2) $f(x)=\sqrt{3 x-12} \geq 0$

Find domain

$$
\begin{gathered}
3 x-12 \geq 0 \\
+12+12 \\
\hline 3 x \geq 12 \\
R: x \geq 4
\end{gathered}
$$

(3) $f(x)=\sqrt{-2 x+4} \geq 0$

Find domalr.

$$
\begin{gathered}
-2 x+4 \geq 0 \\
-4 \geq-4 \\
\hline \frac{-2 \cdot x \geq-4}{-2} \\
x \leq 2
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=x^{2}-9 \\
& \text { Domain: } \mathbb{R} \\
& f(x)=\frac{x^{3}}{(x-2)(x+1)} \\
& \text { Domain: R except } x \neq 2,-1
\end{aligned}
$$

Interval Notation
(1) $x>4 \quad(4, \infty)$
(2) $2<x \leq 10(2,10]$
(3) $x \leq 5 \quad(-\infty, 5]$

Doma:n:R: $x \geq 2$
Range: $\mathbb{R}: y \leq 5$

Domain: \mathbb{R}
Range: $\mathbb{R}_{\text {: }} y \leq-2$

You trillme what is graphed.

$$
\begin{aligned}
& f(x)=2 x+1 \\
& g(x)=8 x-1 \\
& f\left(\frac{f(5 x))}{\downarrow} \quad g(f(x))\right. \\
& 2(5 x)+1 \\
& f(10 x+1) \\
& 2(10 x+1)+1 \\
& 20 x+2+1 \\
& 20 x+3
\end{aligned}
$$

Give inverse of $f(x)=3 x-1$

$$
\text { (1) } \begin{aligned}
y & =3 x-1 \\
x & =3 y-1 \\
+1 & +1 \\
\frac{x+1}{3} & =\frac{3 y}{3} \\
f^{-1}(x) & =\frac{x+1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \{(2,4)(2,8)\} \text { Not a function } \\
& f(x)=\frac{8 x^{3}}{(x-2)(x+10)}
\end{aligned}
$$

Find domain
Dimes: \mathbb{R} except $x \neq 2,-10$

$$
f(x)=\sqrt{2 x-8 \geq 0} \geq \frac{+8+8}{2 x \geq 8}
$$

R: $x \geq 4$

$$
f(x)=\begin{array}{r}
\sqrt{-2 x+10} \geq 0 \\
-10-10 \\
\frac{-2 x}{-2} \geq \frac{-10}{-2} \\
x \leq 5^{-2}
\end{array}
$$

$$
f(x)=x^{2}-25
$$

Domain: \mathbb{Q}

Trill me what I graphed

Domain: $\mathbb{Q}: x>1$
Range: $\mathbb{R}: y<5$

Domain: DR
Range: $A: y \geq 1$

Give inverse $f(x)=5 x-1$
(1) $y=5 x-1$

$$
\text { (2) } \begin{aligned}
x & =5 y-1 \\
+1 & =+1 \\
\frac{x+1}{5} & =\frac{5 y}{5} \\
f^{-1}(x) & =\frac{x+1}{5}
\end{aligned}
$$

Give interval notation
(1) $x \geq 4 \quad[4, \infty)$
(2) $-6<x \leqslant 2(-6,2]$
(3) $x<-6 \quad(-\infty,-6)$

$$
\begin{gathered}
f(x)=5 n+1 \\
f\left(3 n^{2}+1\right)=5\left(3 n^{2}+1\right)+1 \\
15 n^{2}+5+1 \\
15 n^{2}+6
\end{gathered}
$$

